Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 92(9): 1904-1918, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37448134

RESUMEN

Spatial population synchrony is common among populations of the same species and is an important predictor of extinction risk. Despite the potential consequences for metapopulation persistence, we still largely lack understanding of what makes one species more likely to be synchronized than another given the same environmental conditions. Generally, environmental conditions in a shared environment or a species' sensitivity to the environment can explain the extent of synchrony. Populations that are closer together experience more similar fluctuations in their environments than those populations that are further apart and are therefore more synchronized. The relative importance of environmental and demographic stochasticity for population dynamics is strongly linked to species' life-history traits, such as pace of life, which may impact population synchrony. For populations that migrate, there may be multiple environmental conditions at different locations driving synchrony. However, the importance of life history and migration tactics in determining patterns of spatial population synchrony have rarely been explored empirically. We therefore hypothesize that increasing generation time, a proxy for pace of life, would decrease spatial population synchrony and that migrants would be less synchronized than resident species. We used population abundance data on breeding birds from four countries to investigate patterns of spatial population synchrony in growth rate and abundance. We calculated the mean spatial population synchrony between log-transformed population growth rates or log-transformed abundances for each species and country separately. We investigated differences in synchrony across generation times in resident (n = 67), short-distance migrant (n = 86) and long-distance migrant (n = 39) bird species. Species with shorter generation times were more synchronized than species with longer generation times. Short-distance migrants were more synchronized than long-distance migrants and resident birds. Our results provide novel empirical links between spatial population synchrony and species traits known to be of key importance for population dynamics, generation time and migration tactics. We show how these different mechanisms can be combined to understand species-specific causes of spatial population synchrony. Understanding these specific drivers of spatial population synchrony is important in the face of increasingly severe threats to biodiversity and could be key for successful future conservation outcomes.


Asunto(s)
Ecosistema , Crecimiento Demográfico , Animales , Estaciones del Año , Dinámica Poblacional , Aves
2.
Ecology ; 104(11): e4158, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37632351

RESUMEN

Spatially synchronized population dynamics are common in nature, and understanding their causes is key for predicting species persistence. A main driver of synchrony between populations of the same species is shared environmental conditions, which cause populations closer together in space to be more synchronized than populations further from one another. Most theoretical and empirical understanding of this driver considers resident species. For migratory species, however, the degree of spatial autocorrelation in the environment may change across seasons and vary by their geographic location along the migratory route or on a nonbreeding ground, complicating the synchronizing effect of the environment. Migratory species show a variety of different strategies in how they disperse to and aggregate on nonbreeding grounds, ranging from completely shared nonbreeding grounds to multiple different ones. Depending on the sensitivity to environmental conditions off the breeding grounds, we can expect that migration and overwintering strategies will impact the extent and spatial pattern of population synchrony on the breeding grounds. Here, we use spatial population-dynamic modeling and simulations to investigate the relationship between seasonal environmental autocorrelation and migration characteristics. Our model shows that the effects of environmental autocorrelation experienced off the breeding ground on population synchrony depend on the number and size of nonbreeding grounds, and how populations migrate in relation to neighboring populations. When populations migrated to multiple nonbreeding grounds, spatial population synchrony increased with increasing environmental autocorrelation between nonbreeding grounds. Populations that migrated to the same place as near neighbors had higher synchrony at short distances than populations that migrated randomly. However, synchrony declined less across increasing distances for the random migration strategy. The differences in synchrony between migration strategies were most pronounced when the environmental autocorrelation between nonbreeding grounds was low. These results show the importance of considering migration when studying spatial population synchrony and predicting patterns of synchrony and population viability under global environmental change. Climate change and habitat loss and fragmentation may cause range shifts and changes in migratory strategies, as well as changes in the mean and spatial autocorrelation of the environment, which can alter the scale and patterns observed in spatial population synchrony.


Asunto(s)
Cambio Climático , Ecosistema , Estaciones del Año , Dinámica Poblacional , Migración Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA