Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Dev Biol ; 459(1): 61-64, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31877273

RESUMEN

Throughout my professional life I was an academic researcher who had a successful career in developmental biology. When I started the process of closing my lab and retiring from the University, I came to the conclusion that I wanted to do something completely different. I trained for and became a docent at the Asian Art Museum of San Francisco. I apply the skills I acquired as a scientist on a regular basis in my work at the museum, often in unexpected ways. In this article, I discuss my journey from the lab to the museum and what I learned along the way.


Asunto(s)
Arte , Selección de Profesión , Movilidad Laboral , Biología Evolutiva , Museos , Investigadores , Jubilación , Femenino , Amigos , Humanos , Revisión por Pares
2.
Proc Natl Acad Sci U S A ; 109(49): 20023-8, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23150596

RESUMEN

Expression of Sprouty genes is frequently decreased or absent in human prostate cancer, implicating them as suppressors of tumorigenesis. Here we show they function in prostate tumor suppression in the mouse. Concomitant inactivation of Spry1 and Spry2 in prostate epithelium causes ductal hyperplasia and low-grade prostatic intraepithelial neoplasia (PIN). However, when Spry1 and Spry2 loss-of-function occurs in the context of heterozygosity for a null allele of the tumor suppressor gene Pten, there is a striking increase in PIN and evidence of neoplastic invasion. Conversely, expression of a Spry2 gain-of-function transgene in Pten null prostatic epithelium suppresses the tumorigenic effects of loss of Pten function. We show that Sprouty gene loss-of-function results in hyperactive RAS/ERK1/2 signaling throughout the prostate epithelium and cooperates with heterozygosity for a Pten null allele to promote hyperactive PI3K/AKT signaling. Furthermore, Spry2 gain-of-function can suppress hyperactivation of AKT caused by the absence of PTEN. Together, these results point to a key genetic interaction between Sprouty genes and Pten in prostate tumorigenesis and provide strong evidence that Sprouty genes can function to modulate signaling via the RAS/ERK1/2 and PI3K/AKT pathways. The finding that Sprouty genes suppress tumorigenesis caused by Pten loss-of-function suggests that therapeutic approaches aimed at restoring normal feedback mechanisms triggered by receptor tyrosine kinase signaling, including Sprouty gene expression, may provide an effective strategy to delay or prevent high-grade PIN and invasive prostate cancer.


Asunto(s)
Genes Supresores de Tumor/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/fisiología , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/fisiología , Neoplasia Intraepitelial Prostática/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Técnicas Histológicas , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Captura por Microdisección con Láser , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Fosfohidrolasa PTEN/genética , Fosfoproteínas/deficiencia , Reacción en Cadena de la Polimerasa , Neoplasia Intraepitelial Prostática/fisiopatología , Proteínas Serina-Treonina Quinasas , Proteínas ras/metabolismo
3.
Development ; 138(10): 1913-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21471156

RESUMEN

The essential roles of SHH in anteroposterior (AP) and AER-FGF signalling in proximodistal (PD) limb bud development are well understood. In addition, these morphoregulatory signals are key components of the self-regulatory SHH/GREM1/AER-FGF feedback signalling system that regulates distal progression of limb bud development. This study uncovers an additional signalling module required for coordinated progression of limb bud axis development. Transcriptome analysis using Shh-deficient mouse limb buds revealed that the expression of proximal genes was distally extended from early stages onwards, which pointed to a more prominent involvement of SHH in PD limb axis development. In particular, retinoic acid (RA) target genes were upregulated proximally, while the expression of the RA-inactivating Cyp26b1 enzyme was downregulated distally, pointing to increased RA activity in Shh-deficient mouse limb buds. Further genetic and molecular analysis established that Cyp26b1 expression is regulated by AER-FGF signalling. During initiation of limb bud outgrowth, the activation of Cyp26b1 expression creates a distal 'RA-free' domain, as indicated by complementary downregulation of a transcriptional sensor of RA activity. Subsequently, Cyp26b1 expression increases as a consequence of SHH-dependent upregulation of AER-FGF signalling. To better understand the underlying signalling interactions, computational simulations of the spatiotemporal expression patterns and interactions were generated. These simulations predicted the existence of an antagonistic AER-FGF/CYP26B1/RA signalling module, which was verified experimentally. In summary, SHH promotes distal progression of limb development by enhancing CYP26B1-mediated RA clearance as part of a signalling network linking the SHH/GREM1/AER-FGF feedback loop to the newly identified AER-FGF/CYP26B1/RA module.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Tretinoina/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Ectodermo/embriología , Ectodermo/metabolismo , Activación Enzimática , Retroalimentación Fisiológica , Femenino , Factores de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Ácido Retinoico 4-Hidroxilasa , Transducción de Señal
4.
Nature ; 453(7193): 401-5, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18449196

RESUMEN

Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated. Fibroblast growth factor (FGF) gene family members are key AER-derived signals, with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER. Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.


Asunto(s)
Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Esbozos de los Miembros/embriología , Animales , Huesos/embriología , Huesos/metabolismo , Supervivencia Celular , Femenino , Factor 8 de Crecimiento de Fibroblastos/deficiencia , Factor 8 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Esbozos de los Miembros/citología , Esbozos de los Miembros/metabolismo , Masculino , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Tamaño de los Órganos , Transducción de Señal
5.
Nature ; 453(7196): 745-50, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18463632

RESUMEN

Mammalian lungs are branched networks containing thousands to millions of airways arrayed in intricate patterns that are crucial for respiration. How such trees are generated during development, and how the developmental patterning information is encoded, have long fascinated biologists and mathematicians. However, models have been limited by a lack of information on the normal sequence and pattern of branching events. Here we present the complete three-dimensional branching pattern and lineage of the mouse bronchial tree, reconstructed from an analysis of hundreds of developmental intermediates. The branching process is remarkably stereotyped and elegant: the tree is generated by three geometrically simple local modes of branching used in three different orders throughout the lung. We propose that each mode of branching is controlled by a genetically encoded subroutine, a series of local patterning and morphogenesis operations, which are themselves controlled by a more global master routine. We show that this hierarchical and modular programme is genetically tractable, and it is ideally suited to encoding and evolving the complex networks of the lung and other branched organs.


Asunto(s)
Tipificación del Cuerpo/fisiología , Pulmón/anatomía & histología , Pulmón/embriología , Organogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Tipificación del Cuerpo/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Pulmón/citología , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Organogénesis/genética , Proteínas Serina-Treonina Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
6.
Nature ; 456(7224): 980-4, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19043405

RESUMEN

MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear. Here we show that microRNA-21 (miR-21, also known as Mirn21) regulates the ERK-MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function. miR-21 levels are increased selectively in fibroblasts of the failing heart, augmenting ERK-MAP kinase activity through inhibition of sprouty homologue 1 (Spry1). This mechanism regulates fibroblast survival and growth factor secretion, apparently controlling the extent of interstitial fibrosis and cardiac hypertrophy. In vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-induced disease model reduces cardiac ERK-MAP kinase activity, inhibits interstitial fibrosis and attenuates cardiac dysfunction. These findings reveal that microRNAs can contribute to myocardial disease by an effect in cardiac fibroblasts. Our results validate miR-21 as a disease target in heart failure and establish the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Animales , Cardiomiopatías/patología , Cardiomiopatías/terapia , Línea Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas
7.
Development ; 137(22): 3753-61, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20978073

RESUMEN

In many organ systems such as the skin, gastrointestinal tract and hematopoietic system, homeostasis is dependent on the continuous generation of differentiated progeny from stem cells. The rodent incisor, unlike human teeth, grows throughout the life of the animal and provides a prime example of an organ that rapidly deteriorates if newly differentiated cells cease to form from adult stem cells. Hedgehog (Hh) signaling has been proposed to regulate self-renewal, survival, proliferation and/or differentiation of stem cells in several systems, but to date there is little evidence supporting a role for Hh signaling in adult stem cells. We used in vivo genetic lineage tracing to identify Hh-responsive stem cells in the mouse incisor and we show that sonic hedgehog (SHH), which is produced by the differentiating progeny of the stem cells, signals to several regions of the incisor. Using a hedgehog pathway inhibitor (HPI), we demonstrate that Hh signaling is not required for stem cell survival but is essential for the generation of ameloblasts, one of the major differentiated cell types in the tooth, from the stem cells. These results therefore reveal the existence of a positive-feedback loop in which differentiating progeny produce the signal that in turn allows them to be generated from stem cells.


Asunto(s)
Células Madre Adultas/metabolismo , Ameloblastos/citología , Proteínas Hedgehog/metabolismo , Incisivo/crecimiento & desarrollo , Ratones/fisiología , Transducción de Señal , Ameloblastos/metabolismo , Animales , Diferenciación Celular , Células Epiteliales/metabolismo , Femenino , Proteínas Hedgehog/antagonistas & inhibidores , Incisivo/citología
8.
Proc Natl Acad Sci U S A ; 107(33): 14662-7, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20675583

RESUMEN

Electrical cardiac forces have been previously hypothesized to play a significant role in cardiac morphogenesis and remodeling. In response to electrical forces, cultured cardiomyocytes rearrange their cytoskeletal structure and modify their gene expression profile. To translate such in vitro data to the intact heart, we used a collection of zebrafish cardiac mutants and transgenics to investigate whether cardiac conduction could influence in vivo cardiac morphogenesis independent of contractile forces. We show that the cardiac mutant dco(s226) develops heart failure and interrupted cardiac morphogenesis following uncoordinated ventricular contraction. Using in vivo optical mapping/calcium imaging, we determined that the dco cardiac phenotype was primarily due to aberrant ventricular conduction. Because cardiac contraction and intracardiac hemodynamic forces can also influence cardiac development, we further analyzed the dco phenotype in noncontractile hearts and observed that disorganized ventricular conduction could affect cardiomyocyte morphology and subsequent heart morphogenesis in the absence of contraction or flow. By positional cloning, we found that dco encodes Gja3/Cx46, a gap junction protein not previously implicated in heart formation or function. Detailed analysis of the mouse Cx46 mutant revealed the presence of cardiac conduction defects frequently associated with human heart failure. Overall, these in vivo studies indicate that cardiac electrical forces are required to preserve cardiac chamber morphology and may act as a key epigenetic factor in cardiac remodeling.


Asunto(s)
Embrión no Mamífero/fisiología , Sistema de Conducción Cardíaco/fisiología , Corazón/fisiología , Miocardio/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Conexinas/clasificación , Conexinas/genética , Conexinas/metabolismo , Electrocardiografía , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Corazón/embriología , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Filogenia , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
PLoS Genet ; 6(1): e1000809, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20084103

RESUMEN

GDNF signaling through the Ret receptor tyrosine kinase (RTK) is required for ureteric bud (UB) branching morphogenesis during kidney development in mice and humans. Furthermore, many other mutant genes that cause renal agenesis exert their effects via the GDNF/RET pathway. Therefore, RET signaling is believed to play a central role in renal organogenesis. Here, we re-examine the extent to which the functions of Gdnf and Ret are unique, by seeking conditions in which a kidney can develop in their absence. We find that in the absence of the negative regulator Spry1, Gdnf, and Ret are no longer required for extensive kidney development. Gdnf-/-;Spry1-/- or Ret-/-;Spry1-/- double mutants develop large kidneys with normal ureters, highly branched collecting ducts, extensive nephrogenesis, and normal histoarchitecture. However, despite extensive branching, the UB displays alterations in branch spacing, angle, and frequency. UB branching in the absence of Gdnf and Spry1 requires Fgf10 (which normally plays a minor role), as removal of even one copy of Fgf10 in Gdnf-/-;Spry1-/- mutants causes a complete failure of ureter and kidney development. In contrast to Gdnf or Ret mutations, renal agenesis caused by concomitant lack of the transcription factors ETV4 and ETV5 is not rescued by removing Spry1, consistent with their role downstream of both RET and FGFRs. This shows that, for many aspects of renal development, the balance between positive signaling by RTKs and negative regulation of this signaling by SPRY1 is more critical than the specific role of GDNF. Other signals, including FGF10, can perform many of the functions of GDNF, when SPRY1 is absent. But GDNF/RET signaling has an apparently unique function in determining normal branching pattern. In contrast to GDNF or FGF10, Etv4 and Etv5 represent a critical node in the RTK signaling network that cannot by bypassed by reducing the negative regulation of upstream signals.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Riñón/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Riñón/embriología , Riñón/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organogénesis , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal , Uréter/anomalías , Uréter/metabolismo
10.
Nature ; 443(7109): 337-9, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16988712

RESUMEN

It has been proposed that haematopoietic and endothelial cells share a common progenitor, termed the haemangioblast. This idea was initially conceived as a result of the observation that these two cell types develop in close proximity to each other within the embryo. Support for this hypothesis was provided by studies on single-cell-derived colonies that can produce both haematopoietic and endothelial cells in vitro. Although these data point towards the existence of a common progenitor for these two lineages, the presence of a bipotential progenitor cell has yet to be demonstrated in vivo. Through the construction of single-cell-resolution fate maps of the zebrafish late blastula and gastrula, we demonstrate that individual cells can give rise to both haematopoietic and endothelial cells. These bipotential progenitors arise along the entire extent of the ventral mesoderm and contribute solely to haematopoietic and endothelial cells. We also find that only a subset of haematopoietic and endothelial cells arise from haemangioblasts. The endothelial descendants of the haemangioblasts all clustered in a specific region of the axial vessels regardless of the location of their progenitors. Our results provide in vivo evidence supporting the existence of the haemangioblast and reveal distinct features of this cell population.


Asunto(s)
Linaje de la Célula , Embrión no Mamífero/citología , Células Endoteliales/citología , Gástrula/citología , Células Madre Hematopoyéticas/citología , Pez Cebra/sangre , Pez Cebra/embriología , Animales , Blástula/citología , Embrión no Mamífero/embriología
11.
Dev Cell ; 11(2): 181-90, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16890158

RESUMEN

Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments--Spry2 in epithelium and Spry4 in mesenchyme--to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development.


Asunto(s)
Diastema/embriología , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Proteínas del Tejido Nervioso/fisiología , Proteínas/fisiología , Transducción de Señal/efectos de los fármacos , Diente/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Epitelio/efectos de los fármacos , Epitelio/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Mesodermo/efectos de los fármacos , Mesodermo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Proteínas Serina-Treonina Quinasas , Proteínas/genética , Proteínas/farmacología , Transducción de Señal/fisiología , Diente/crecimiento & desarrollo
12.
Dev Cell ; 11(3): 339-48, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16950125

RESUMEN

While particular combinations of mesodermal signals are known to induce distinct tissue-specific programs in the endoderm, there is little information about the response pathways within endoderm cells that control their specification. We have used signaling inhibitors on embryo tissue explants and whole-embryo cultures as well as genetic approaches to reveal part of an intracellular network by which FGF signaling helps induce hepatic genes and stabilize nascent hepatic cells within the endodermal epithelium. Specifically, we found that hepatic gene induction is elicited by an FGF/MAPK pathway. Although the PI3K pathway is activated in foregut endoderm cells, its inhibition does not block hepatic gene induction in explants; however, it does block tissue growth. We also found that at the onset of hepatogenesis, the FGF/MAPK and PI3K pathways do not crossregulate in the endoderm. The finding of separate pathways for endoderm tissue specification and growth provides insights for guiding cellular regeneration and stem cell differentiation.


Asunto(s)
Tipificación del Cuerpo , Inducción Embrionaria , Endodermo/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Hígado/metabolismo , Organogénesis , Proteínas Adaptadoras Transductoras de Señales , Animales , Proliferación Celular , Técnicas de Cultivo de Embriones , Endodermo/citología , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Integrasas/genética , Péptidos y Proteínas de Señalización Intracelular , Hígado/citología , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Mesodermo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteínas/metabolismo , Transducción de Señal
13.
Blood ; 113(11): 2478-87, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19147787

RESUMEN

B-cell lymphoma is the most common immune system malignancy. TCL1 transgenic mice (TCL1-tg), in which TCL1 is ectopically expressed in mature lymphocytes, develop multiple B- and T-cell leukemia and lymphoma subtypes, supporting an oncogenic role for TCL1 that probably involves AKT and MAPK-ERK signaling pathway augmentation. Additional, largely unknown genetic and epigenetic alterations cooperate with TCL1 during lymphoma progression. We examined DNA methylation patterns in TCL1-tg B-cell tumors to discover tumor-associated epigenetic changes, and identified hypermethylation of sprouty2 (Spry2). Sprouty proteins are context-dependent negative or positive regulators of MAPK-ERK pathway signaling, but their role(s) in B-cell physiology or pathology are unknown. Here we show that repression of Spry2 expression in TCL1-tg mouse and human B-cell lymphomas and cell lines is associated with dense DNA hypermethylation and was reversed by inhibition of DNA methylation. Spry2 expression was induced in normal splenic B cells by CD40/B-cell receptor costimulation and regulated a negative feedback loop that repressed MAPK-ERK signaling and decreased B-cell viability. Conversely, loss of Spry2 function hyperactivated MAPK-ERK signaling and caused increased B-cell proliferation. Combined, these results implicate epigenetic silencing of Spry2 expression in B lymphoma progression and suggest it as a companion lesion to ectopic TCL1 expression in enhancing MAPK-ERK pathway signaling.


Asunto(s)
Linfocitos B/fisiología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B/genética , Proteínas de la Membrana/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Linfocitos B/metabolismo , Antígenos CD40/metabolismo , Antígenos CD40/fisiología , Metilación de ADN/fisiología , Femenino , Silenciador del Gen/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Células Tumorales Cultivadas
14.
Dev Cell ; 8(4): 553-64, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15809037

RESUMEN

The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic perturbations in organ of Corti cytoarchitecture: instead of two pillar cells, there are three, resulting in the formation of an ectopic tunnel of Corti. We demonstrate that these effects are due to a postnatal cell fate transformation of a Deiters' cell into a pillar cell. Both this cell fate change and hearing loss can be partially rescued by reducing Fgf8 gene dosage in Spry2 null mutant mice. Our results provide evidence that antagonism of FGF signaling by SPRY2 is essential for establishing the cytoarchitecture of the organ of Corti and for hearing.


Asunto(s)
Sordera/genética , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/metabolismo , Audición/fisiología , Órgano Espiral/citología , Órgano Espiral/crecimiento & desarrollo , Proteínas , Proteínas Adaptadoras Transductoras de Señales , Animales , Linaje de la Célula , Oído Medio/anatomía & histología , Oído Medio/fisiología , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Ratones Noqueados , Morfogénesis/fisiología , Órgano Espiral/anomalías , Proteínas Serina-Treonina Quinasas , Proteínas/genética , Proteínas/metabolismo , Transducción de Señal/fisiología
15.
Dev Cell ; 8(2): 229-39, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15691764

RESUMEN

Intercellular signaling molecules and their receptors, whose expression must be tightly regulated in time and space, coordinate organogenesis. Regulators of intracellular signaling pathways provide an additional level of control. Here we report that loss of the receptor tyrosine kinase (RTK) antagonist, Sprouty1 (Spry1), causes defects in kidney development in mice. Spry1(-/-) embryos have supernumerary ureteric buds, resulting in the development of multiple ureters and multiplex kidneys. These defects are due to increased sensitivity of the Wolffian duct to GDNF/RET signaling, and reducing Gdnf gene dosage correspondingly rescues the Spry1 null phenotype. We conclude that the function of Spry1 is to modulate GDNF/RET signaling in the Wolffian duct, ensuring that kidney induction is restricted to a single site. These results demonstrate the importance of negative feedback regulation of RTK signaling during kidney induction and suggest that failures in feedback control may underlie some human congenital kidney malformations.


Asunto(s)
Riñón/embriología , Proteínas de la Membrana/fisiología , Factores de Crecimiento Nervioso/fisiología , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Secuencia de Bases , ADN/genética , Inducción Embrionaria , Retroalimentación , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos , Riñón/anomalías , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ret , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Uréter/anomalías , Uréter/embriología , Conductos Mesonéfricos/embriología
16.
G3 (Bethesda) ; 10(5): 1503-1510, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152007

RESUMEN

The UCSF Mouse Inventory Database Application is an open-source Web App that provides information about the mutant alleles, transgenes, and inbred strains maintained by investigators at the university and facilitates sharing of these resources within the university community. The Application is designed to promote collaboration, decrease the costs associated with obtaining genetically-modified mice, and increase access to mouse lines that are difficult to obtain. An inventory of the genetically-modified mice on campus and the investigators who maintain them is compiled from records of purchases from external sources, transfers from researchers within and outside the university, and from data provided by users. These data are verified and augmented with relevant information harvested from public databases, and stored in a succinct, searchable database secured on the university network. Here we describe this resource and provide information about how to implement and maintain such a mouse inventory database application at other institutions.


Asunto(s)
Aplicaciones Móviles , Alelos , Animales , Bases de Datos Factuales , Internet , Ratones , Transgenes
17.
J Neurosci ; 28(19): 4938-48, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18463247

RESUMEN

Mitochondrial dysfunction is commonly associated with neurodegeneration in the aging brain. In addition, the importance of mitochondrial function during brain development is illustrated by the neurological deficits observed in infants with mitochondrial complex deficiencies. However, the extent to which abnormalities in mitochondrial function might impact neurogenesis during brain development is not well understood. Previously, we demonstrated that adult harlequin (Hq) mutant mice, which have an 80% reduction in the mitochondrial protein apoptosis-inducing factor (AIF), exhibited signs of oxidative stress and progressive loss of adult cerebellar and retinal neurons. To assess whether in addition to its role in postmitotic neuron survival Aif is also necessary for cerebellar development, we analyzed embryos in which Aif was deleted in the prospective midbrain and cerebellum at a very early stage of development using an En1 (engrailed 1) promoter-driven cre recombinase gene. These mutant mice, which died at birth, had midbrain defects and dramatic deficits in cerebellar Purkinje and granule cell precursors. Additional analysis revealed that Aif-null Purkinje cell precursors prematurely entered S-phase, but most failed to undergo mitosis and ultimately died via apoptosis. In contrast, proliferation of mutant granule cell precursors was blocked before S-phase. Mice in which Aif was deleted later in embryogenesis using a nestin promoter-driven cre gene survive for several days after birth, and postnatal granule cell precursors in these mice also failed to enter S-phase. Our results indicate that the loss of Aif results in cell cycle abnormalities in a neuron-specific manner during cerebellar development.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Cerebelo/embriología , Animales , Apoptosis/fisiología , Factor Inductor de la Apoptosis/deficiencia , Factor Inductor de la Apoptosis/genética , Ciclo Celular/fisiología , Desarrollo Embrionario/fisiología , Fase G1/fisiología , Eliminación de Gen , Mesencéfalo/embriología , Ratones , Ratones Mutantes , Neuronas/fisiología , Células de Purkinje/citología , Fase S/fisiología , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo
18.
Dev Biol ; 321(1): 77-87, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18585375

RESUMEN

FGF signaling is associated with breast cancer and is required for mammary placode formation in the mouse. In this study, we employed a genetic mosaic analysis based on Cre-mediated recombination to investigate FGF receptor 2 (Fgfr2) function in the postnatal mammary gland. Mosaic inactivation of Fgfr2 by the MMTV-Cre transgene enabled us to compare the behavior of Fgfr2 null and Fgfr2 heterozygous cells in the same gland. Fgfr2 null cells were at a competitive disadvantage to their Fgfr2 heterozygous neighbors in the highly proliferative terminal end buds (TEBs) at the invasion front, owing to a negative effect of loss of Fgfr2 function on cell proliferation. However, Fgfr2 null cells were tolerated in mature ducts. In these genetic mosaic mammary glands, the epithelial network is apparently built by TEBs that over time are composed of a progressively larger proportion of Fgfr2-positive cells. However, subsequently, most cells lose Fgfr2 function, presumably due to additional rounds of Cre-mediated recombination. Using an independent strategy to create mosaic mammary glands, which employed an adenovirus-Cre that acts only once, we confirmed that Fgfr2 null cells were out-competed by neighboring Fgfr2 heterozygous cells. Together, our data demonstrate that Fgfr2 functions in the proliferating and invading TEBs, but it is not required in the mature ducts of the pubertal mammary gland.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Morfogénesis , Maduración Sexual
19.
Dev Cell ; 6(5): 709-17, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15130495

RESUMEN

Kidney development occurs in a stereotypic position along the body axis. It begins when a single ureteric bud emerges from the nephric duct in response to GDNF secreted by the adjacent nephrogenic mesenchyme. Posterior restriction of Gdnf expression is considered critical for correct positioning of ureteric bud development. Here we show that mouse mutants lacking either SLIT2 or its receptor ROBO2, molecules known primarily for their function in axon guidance and cell migration, develop supernumerary ureteric buds that remain inappropriately connected to the nephric duct, and that the SLIT2/ROBO2 signal is transduced in the nephrogenic mesenchyme. Furthermore, we show that Gdnf expression is inappropriately maintained in anterior nephrogenic mesenchyme in these mutants. Thus our data identify an intercellular signaling system that restricts, directly or indirectly, the extent of the Gdnf expression domain, thereby precisely positioning the site of kidney induction.


Asunto(s)
Tipificación del Cuerpo/fisiología , Inducción Embrionaria/fisiología , Riñón/embriología , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/fisiología , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factor Neurotrófico Derivado de la Línea Celular Glial , Péptidos y Proteínas de Señalización Intercelular , Riñón/citología , Riñón/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Mutación/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Transducción de Señal/genética , Uréter/citología , Uréter/embriología , Uréter/metabolismo
20.
Genesis ; 46(2): 69-73, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18257103

RESUMEN

Cre-mediated recombination, a method widely used in mice for tissue-specific inactivation of endogenous genes or activation of transgenes, is critically dependent on the availability of mouse lines in which Cre recombinase functions in the tissue of interest or its progenitors. Here we describe a transgenic mouse line, Osr1-cre, in which Cre is active from embryonic day (E)11.5 in a few specific tissues. These include the endoderm of the posterior foregut, midgut, hindgut, and developing urogenital system, the heart left atrium, extra-ocular muscle progenitors, and mesenchyme in particular regions of the limb. Furthermore, starting at E12.5, Cre functions in limb interdigital mesenchyme. Within the urogenital system, recombination appears to be virtually complete in the epithelium of the bladder and urethra just posterior to it by E14.5. In males, some of these urethral cells form the prostate. The spatiotemporal pattern of Cre activity in Osr1-cre makes it a unique resource among the lines available for Cre-mediated recombination experiments.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Técnicas Genéticas , Integrasas/genética , Animales , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA