RESUMEN
Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras-driven mouse model of PDA (Ela-KrasG12Vp53-/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.
Asunto(s)
Carcinoma Ductal Pancreático/terapia , Galectina 1/fisiología , Galectinas/fisiología , Terapia Molecular Dirigida , Neoplasias Pancreáticas/terapia , Animales , Carcinoma Ductal Pancreático/irrigación sanguínea , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , División Celular/genética , Movimiento Celular/genética , Medios de Cultivo Condicionados , Galectinas/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Xenoinjertos , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Metástasis de la Neoplasia , Neovascularización Patológica , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/trasplante , Comunicación Paracrina , ARN Interferente Pequeño/genética , Células del Estroma/metabolismo , Microambiente TumoralRESUMEN
The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.
Asunto(s)
ARN Helicasas DEAD-box/genética , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Bromovirus/genética , Exones/genética , Regulación de la Expresión Génica/genética , Humanos , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Ribosomas/genética , Saccharomyces cerevisiae/genéticaRESUMEN
In the last decades, the focus of cancer research has moved from epithelial cells to the tumor milieu, in an effort to better understand tumor development and progression, and with the important end goal of translating this knowledge into effective therapies. The galectin family of glycan-binding proteins displays important functions in cancer development and progression. Numerous groups have made outstanding contributions to deepen our knowledge about the role of galectins in the tumor-stroma crosstalk, defining them as key players in modulating interactions between tumor cells and the extracellular matrix, fibroblasts, endothelium, and the immune system. While several members of the family have been of particular interest until now, others are still considered as future exploding stars. This chapter provides an overview for galectin-1, the first identified and still one of the most well-studied galectins, and highlights the very important implications in its regulation of the tumor microenvironment in many different tumor types. Besides, a glimpse of the role of other galectins in the tumor milieu is also provided. Gaining a deeper understanding about the numerous roles of galectin-1 will not only help us to better understand other galectins but also is likely to result in the development of more effective cancer therapies.
Asunto(s)
Galectina 1/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animales , Humanos , Transducción de SeñalRESUMEN
Aberrant sialylation is frequently found in pancreatic ductal adenocarcinoma (PDA). α2,3-Sialyltransferases (α2,3-STs) ST3GAL3 and ST3GAL4 are overexpressed in PDA tissues and are responsible for increased biosynthesis of sialyl-Lewis (sLe) antigens, which play an important role in metastasis. This study addresses the effect of α2,3-STs knockdown on the migratory and invasive phenotype of PDA cells, and on E-selectin-dependent adhesion. Characterization of the cell sialome, the α2,3-STs and fucosyltransferases involved in the biosynthesis of sLe antigens, using a panel of human PDA cells showed differences in the levels of sialylated determinants and α2,3-STs expression, reflecting their phenotypic heterogeneity. Knockdown of ST3GAL3 and ST3GAL4 in BxPC-3 and Capan-1 cells, which expressed moderate to high levels of sLe antigens and α2,3-STs, led to a significant reduction in sLex and in most cases in sLea, with slight increases in the α2,6-sialic acid content. Moreover, ST3GAL3 and ST3GAL4 downregulation resulted in a significant decrease in cell migration and invasion. Binding and rolling to E-selectin, which represent key steps in metastasis, were also markedly impaired in the α2,3-STs knockdown cells. Our results indicate that inhibition of ST3GAL3 and ST3GAL4 may be a novel strategy to block PDA metastasis, which is one of the reasons for its dismal prognosis.
Asunto(s)
Selectina E/metabolismo , Neoplasias Pancreáticas/metabolismo , ARN Interferente Pequeño/farmacología , Sialiltransferasas/genética , Línea Celular Tumoral , Movimiento Celular , Fucosiltransferasas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Sialiltransferasas/antagonistas & inhibidoresRESUMEN
The poly(ADP-ribose) polymerase (PARP) enzymes were initially characterized as sensors of DNA breaks but are now known to play key roles not only in the DNA damage response but also in regulating numerous molecular processes, such as gene transcription. Furthermore, these polymerases have emerged as key players in the pathogenesis of multiple diseases, providing promising therapeutic targets for pathologies such as cardiovascular disorders, neurodegenerative diseases, and cancer. In recent years, PARPs have been implicated in the pathogenesis of pancreatitis and pancreatic cancer, and PARP inhibition has been proposed as a valuable strategy for treating these two important gastrointestinal tract disorders. For instance, in preclinical mouse models, pancreatitis was significantly attenuated after genetic or pharmacological PARP inactivation, and several clinical trials have demonstrated promising responses to PARP inhibitors in pancreatic cancer patients. In this review, we summarize the current understanding of PARP functions in these two dismal pathologies and discuss the next steps necessary to determine whether PARP inhibitors will finally make the difference in treating pancreatitis and pancreatic cancer successfully.
Asunto(s)
Daño del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Humanos , Enfermedades Pancreáticas/tratamiento farmacológico , Enfermedades Pancreáticas/metabolismoRESUMEN
Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light into the clinical use of Parp-1 inhibitors.
Asunto(s)
Neoplasias Pancreáticas/genética , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes ras/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Poli(ADP-Ribosa) Polimerasa-1RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) represents the most prevalent type of pancreatic cancer and ranks among the most aggressive tumours, with a 5-year survival rate of less than 11%. Projections indicate that by 2030, it will become the second leading cause of cancer-related deaths. PDAC presents distinctive hallmarks contributing to its dismal prognosis: (i) late diagnosis, (ii) heterogenous and complex mutational landscape, (iii) high metastatic potential, (iv) dense fibrotic stroma, (v) immunosuppressive microenvironment, and (vi) high resistance to therapy. Mounting evidence has shown a role for TAM (Tyro3, AXL, MerTK) family of tyrosine kinase receptors in PDAC initiation and progression. This review aims to describe the impact of TAM receptors on the defining hallmarks of PDAC and discuss potential future directions using these proteins as novel biomarkers for early diagnosis and targets for precision therapy in PDAC, an urgent unmet clinical need.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Tirosina Quinasas Receptoras , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Microambiente Tumoral , Biomarcadores de Tumor , Tirosina Quinasa del Receptor Axl , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Mutación , PronósticoRESUMEN
Pancreatic ductal adenocarcinoma remains a highly aggressive and untreatable cancer. There is a need to develop a new PDAC-associated antigen-targeting drug delivery system to tackle this disease. We validated choosing ZIP4 as a putative target in PDAC theranostics. We developed a nanosystem composed of a fluorescent polystyrene core coated with gold nanoparticles onto which a ZIP4-specific polyclonal antibody is attached. The polystyrene core's fluorescence properties allow the nanosystem tracking by intravital imaging. We also developed two ZIP4-expressing cell lines by stably transfecting HEK293 and RWP1 cells with a ZIP4-coding plasmid that simultaneously provides cells with puromycin resistance. We studied the cell internalisation of the as-synthesised nanoparticles and demonstrated that ZIP4-expressing HEK293 and ZIP4-expressing RWP1 cells tended to take up more ZIP4-targeting nanoparticles. Moreover, we observed that ZIP4-targeting nanoparticles accumulated more in ZIP4-expressing HEK293 and RWP1 tumours when injected intravenously in a subcutaneous xenograft and an orthotopic in vivo model, respectively. Furthermore, the administration of these nanoparticles did not induce any significant systemic toxicity as determined by histological analysis of all organs. Altogether, these results provide the first evidence of the feasibility of using a ZIP4-targeting nanosystem further to design efficient therapeutic and diagnostic tools for PDAC.
RESUMEN
Metastatic colorectal cancer (mCRC) currently lacks reliable biomarkers for precision medicine, particularly for chemotherapy-based treatments. This study examines the behavior of 11 CXC chemokines in the blood of 104 mCRC patients undergoing first-line oxaliplatin-based treatment to pinpoint predictive and prognostic markers. Serum samples were collected before treatment, at response evaluation (EVAR), and at disease progression or last follow-up. Chemokines were assessed in all samples using a Luminex® custom panel. CXCL13 levels increased at EVAR in responders, while in non-responders it decreased. Increasing levels of CXCL13 at EVAR, independently correlated with improved progression-free survival (PFS) and overall survival (OS). Nanostring® analysis in primary tumor samples showed CXCL13 gene expression's positive correlation not only with gene profiles related to an immunogenic tumor microenvironment, increased B cells and T cells (mainly CD8+) but also with extended OS. In silico analysis using RNAseq data from liver metastases treated or not with neoadjuvant oxaliplatin-based combinations, and deconvolution analysis using the MCP-counter algorithm, confirmed CXCL13 gene expression's association with increased immune infiltration, improved OS, and Tertiary Lymphoid Structures (TLSs) gene signatures, especially in neoadjuvant-treated patients. CXCL13 analysis in serum from 36 oxaliplatin-treated patients from the METIMMOX study control arm, reported similar findings. In conclusion, the increase of CXCL13 levels in peripheral blood and its association with the formation of TLSs within the metastatic lesions, emerges as a potential biomarker indicative of the therapeutic efficacy in mCRC patients undergoing oxaliplatin-based treatment.
Asunto(s)
Biomarcadores de Tumor , Quimiocina CXCL13 , Neoplasias Colorrectales , Oxaliplatino , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Oxaliplatino/uso terapéutico , Oxaliplatino/farmacología , Masculino , Quimiocina CXCL13/sangre , Femenino , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Resultado del Tratamiento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Adulto , Anciano de 80 o más Años , Supervivencia sin Progresión , Microambiente Tumoral , PronósticoRESUMEN
Glioblastoma (GBM) is the most frequent primary malignant brain tumor and has a dismal prognosis. Unfortunately, despite the recent revolution of immune checkpoint inhibitors in many solid tumors, these have not shown a benefit in overall survival in GBM patients. Therefore, new potential treatment targets as well as diagnostic, prognostic, and/or predictive biomarkers are needed to improve outcomes in this population. The ß-galactoside binding protein Galectin-1 (Gal-1) is a protein with a wide range of pro-tumor functions such as proliferation, invasion, angiogenesis, and immune suppression. Here, we evaluated Gal-1 expression by immunohistochemistry in a homogenously treated cohort of GBM (the GLIOCAT project) and correlated its expression with clinical and molecular data. We observed that Gal-1 is a negative prognostic factor in GBM. Interestingly, we observed higher levels of Gal-1 expression in the mesenchymal/classical subtypes compared to the less aggressive proneural subtype. We also observed a Gal-1 expression correlation with immune suppressive signatures of CD4 T-cells and macrophages, as well as with several GBM established biomarkers, including SHC1, PD-L1, PAX2, MEOX2, YKL-40, TCIRG1, YWHAG, OLIG2, SOX2, Ki-67, and SOX11. Moreover, Gal-1 levels were significantly lower in grade 4 IDH-1 mutant astrocytomas, which have a better prognosis. Our results confirm the role of Gal-1 as a prognostic factor and also suggest its value as an immune-suppressive biomarker in GBM.
Asunto(s)
Astrocitoma , Glioblastoma , ATPasas de Translocación de Protón Vacuolares , Humanos , Galectina 1/genética , Galectina 1/metabolismo , Pronóstico , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Astrocitoma/metabolismo , Biomarcadores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas 14-3-3/metabolismoRESUMEN
Galectins have been linked to tumorigenesis since 1975, even before this family of proteins was given its name. Since then, hundreds of papers have analyzed the role of different galectins in cancer development and progression, deciphering their involvement in many different pathological events, from the regulation of cell cycle, to angiogenesis, metastasis, and immune attack evasion. Importantly, the tumor galectin profile is often altered in many cancers and aberrant levels of some of the members of this family have been considered in diagnosis and frequently correlated with patient prognosis and clinicopathological characteristics. In this chapter, we summarize most frequent techniques employed in cancer research to interrogate the role of galectins, using Gal-1 to illustrate one member of the family and pancreatic cancer as an experimental model. We will cover from techniques employed to detect their expression (tissue and blood samples) to the most frequent tools used to change expression levels and the cell line-based in vitro studies and murine preclinical models used to explore their role in tumor progression and/or clinical translation.
Asunto(s)
Galectinas , Neoplasias Pancreáticas , Animales , Carcinogénesis , Transformación Celular Neoplásica , Galectinas/genética , Galectinas/metabolismo , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Pancreáticas/metabolismoRESUMEN
Hypersialylation is a feature of pancreatic ductal adenocarcinoma (PDA) and it has been related to tumor malignancy and immune suppression. In this work, we have evaluated the potential of the sialyltransferase inhibitor, Ac53FaxNeu5Ac, to decrease tumor sialoglycans in PDA and to revert its malignant phenotype. Sialoglycans on PDA cells were evaluated by flow cytometry, and the functional impact of Ac53FaxNeu5Ac was assessed using E-selectin adhesion, migration, and invasion assays. PDA tumors were generated in syngeneic mice from KC cells and treated with Ac53FaxNeu5Ac to evaluate tumor growth, mice survival, and its impact on blocking sialic acid (SA) and on the tumor immune component. Ac53FaxNeu5Ac treatment on human PDA cells decreased α2,3-SA and sialyl-Lewisx, which resulted in a reduction in their E-selectin adhesion, and in their migratory and invasive capabilities. Subcutaneous murine tumors treated with Ac53FaxNeu5Ac reduced their volume, their SA expression, and modified their immune component, with an increase in CD8+ T-lymphocytes and NK cells. In conclusion, Ac53FaxNeu5Ac treatment weakened PDA cells' malignant phenotype, thereby reducing tumor growth while favoring anti-tumor immune surveillance. Altogether, these results show the positive impact of reducing SA expression by inhibiting cell sialyltransferases and open the way to use sialyltransferase inhibitors to target this dismal disease.
RESUMEN
Dyslipidemia, metabolic disorders and/or obesity are postulated as risk factors for pancreatic ductal adenocarcinoma (PDAC). The majority of patients with these metabolic alterations have low density lipoproteins (LDLs) with increased susceptibility to become aggregated in the extracellular matrix (ECM). LDL aggregation can be efficiently inhibited by low-density lipoprotein receptor-related protein 1 (LRP1)-based peptides. The objectives of this work were: (i) to determine if aggregated LDLs affect the intracellular cholesteryl ester (CE)/free cholesterol (FC) ratio and/or the tumor pancreatic cell proliferation, using sphingomyelinase-modified LDL particles (Aggregated LDL, AgLDL); and (ii) to test whether LRP1-based peptides, highly efficient against LDL aggregation, can interfere in these processes. For this, we exposed human pancreatic cancer cell lines (PANC-1, RWP-1 and Capan-1) to native (nLDL) or AgLDLs in the absence or presence of LRP1-based peptides (DP3) or irrelevant peptides (IP321). Results of thin-layer chromatography (TLC) following lipid extraction indicate that AgLDLs induce a higher intracellular CE/FC ratio than nLDL, and that DP3 but not IP321 counteracts this effect. AgLDLs also increase PANC-1 cell proliferation, which is inhibited by the DP3 peptide. Our results indicate that AgLDL-induced intracellular CE accumulation plays a crucial role in the proliferation of pancreatic tumor cell lines. Peptides with anti-LDL aggregation properties may thus exhibit anti-tumor effects.
RESUMEN
BACKGROUND: Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. METHODS: AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. FINDINGS: AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. INTERPRETATION: sAXL appears as a biomarker for early detection of PDAC and PDAC-CP discrimination that could accelerate treatment and improve its dismal prognosis. FUNDING: This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis Crónica , Animales , Biomarcadores de Tumor , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/diagnóstico , Diagnóstico Diferencial , Diagnóstico Precoz , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Neoplasias Pancreáticas/diagnóstico , Pancreatitis Crónica/diagnósticoRESUMEN
A magnetic beads (MB)-involved amperometric immunosensor for the determination of ST2, a member of the IL1 receptor family, is reported in this work. The method utilizes a sandwich immunoassay and disposable screen-printed carbon electrodes (SPCEs). Magnetic immunoconjugates built on the surface of carboxylic acid-microsized magnetic particles (HOOC-MBs) were used to selectively capture ST2. A biotinylated secondary antibody further conjugated with a streptavidin peroxidase conjugate (Strep-HRP) was used to accomplish the sandwiching of the target protein. The immune platform exhibits great selectivity and a low limit of detection (39.6 pg mL-1) for ST2, allowing the determination of soluble ST2 (sST2) in plasma samples from healthy individuals and patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) in only 45 min once the immunoconjugates have been prepared. The good correlation of the obtained results with those provided by an ELISA kit performed using the same immunoreagents demonstrates the potential of the developed strategy for early diagnosis and/or prognosis of the fatal PDAC disease.
Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Neoplasias/diagnóstico , Anticuerpos , Carbono , Técnicas Electroquímicas , Electrodos , Ensayo de Inmunoadsorción Enzimática , Humanos , Peróxido de Hidrógeno , Límite de Detección , MagnetismoRESUMEN
BACKGROUND & AIMS: Tissue plasminogen activator (tPA) exerts many different functions in addition to its role in fibrinolysis. In pancreatic ductal adenocarcinoma (PDA), tPA is overexpressed and plays an important role in proliferation, invasion, and angiogenesis. tPA interaction with cell membrane receptors has been related to increased proteolytic activity and to signal transduction through nonenzymatic mechanisms. The aim was to analyze the role of galectin-1 (Gal-1), an endogenous lectin that also is overexpressed in PDA, as a new functional receptor for tPA. METHODS: Gal-1/tPA interaction was analyzed using surface plasmon resonance and pull-down assays. Pancreatic cells and tumors were used to study Gal-1 expression and localization by Western blot and immunostaining. Down-regulation of Gal-1 by small interference RNA was used to analyze the involvement of Gal-1/tPA interaction in extracellular signal-regulated kinase 1/2 activation, cell proliferation, and invasion in pancreatic and fibroblastic cells. RESULTS: Gal-1/tPA interaction is direct, specific, and of high affinity. Gal-1 moderately increases the catalytic activity of tPA. High Gal-1 levels were detected in PDA cells in culture, where it concentrates at the migration front, and in tissues, where it is expressed in epithelial cells and in the stroma. Down-regulation of Gal-1 abolished the effects of tPA on extracellular signal-regulated kinase 1/2 activation, cell proliferation, and invasion, both in pancreatic and in tumor-derived fibroblasts. CONCLUSIONS: These findings support a new molecular mechanism by which Gal-1 interaction with tPA contributes to PDA progression involving both transformed epithelial cells and tumor fibroblasts.
Asunto(s)
Adenocarcinoma/metabolismo , Galectina 1/metabolismo , Neoplasias Pancreáticas/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Adenocarcinoma/patología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Galectina 1/genética , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , ARN Interferente Pequeño/farmacologíaRESUMEN
Galectins are an endogenous family of ß-galactoside-binding proteins that play complex and multifaceted roles at various stages of cancer progression, including modulation of tumor cell proliferation, signaling, adhesion, migration, invasion, epithelial-mesenchymal transition, angiogenesis, and immune escape. Recently, galectins have been implicated as major therapeutic determinants that confer sensitivity or resistance to a wide range of anticancer modalities including chemotherapy, radiotherapy, targeted therapies, antiangiogenic therapies, and immunotherapies. Here, we present an integrated approach to the pleiotropic functions of galectins and discuss their emerging roles with respect to mechanisms of resistance or sensitivity to anticancer therapies. Taken together, these findings suggest that targeting galectins and/or their glycosylated ligands may help to overcome resistance and to increase the clinical efficacy of anticancer strategies.
Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Galectinas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Galectinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologíaRESUMEN
Galectins are a family of proteins that bind ß-galactose residues through a highly conserved carbohydrate recognition domain. They regulate several important biological functions, including cell proliferation, adhesion, migration, and invasion, and play critical roles during embryonic development and cell differentiation. In adults, different galectin members are expressed depending on the tissue type and can be altered during pathological processes. Numerous reports have shown the involvement of galectins in diseases, mostly inflammation and cancer. Here, we review the state-of-the-art of the role that different galectin family members play in pancreatic cancer. This tumor is predicted to become the second leading cause of cancer-related deaths in the next decade as there is still no effective treatment nor accurate diagnosis for it. We also discuss the possible translation of recent results about galectin expression and functions in pancreatic cancer into clinical interventions (i.e., diagnosis, prediction of prognosis and/or therapy) for this fatal disease.
Asunto(s)
Galectinas , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Galectinas/metabolismo , Galectinas/farmacología , Humanos , Terapia de Inmunosupresión/métodos , Inmunoterapia/métodos , Neoplasias PancreáticasRESUMEN
Advanced prostate and bladder cancer are two outstanding unmet medical needs for urological oncologists. The high prevalence of these tumours, lack of effective biomarkers and limited effective treatment options highlight the importance of basic research in these diseases. Galectins are a family of ß-galactoside-binding proteins that are frequently altered (upregulated or downregulated) in a wide range of tumours and have roles in different stages of tumour development and progression, including immune evasion. In particular, altered expression levels of different members of the galectin family have been reported in prostate and bladder cancers, which, together with the aberrant glycosylation patterns found in tumour cells and the constituent cell types of the tumour microenvironment, can result in malignant transformation and tumour progression. Understanding the roles of galectin family proteins in the development and progression of prostate and bladder cancer could yield key insights to inform the clinical management of these diseases.