Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Lett ; 32(9): 1207-14, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20431912

RESUMEN

Coagulation factor VIII (FVIII) concentrates are used in the treatment of patients with Hemophilia A. Human FVIII was purified directly from plasma using anion exchange chromatography followed by gel filtration. Three Q-Sepharose resins were tested, resulting in 40% recovery of FVIII activity using Q-Sepharose XL resin, about 80% using Q-Sepharose Fast Flow and 70% using the Q-Sepharose Big Beads. The vitamin K-dependent coagulation factors co-eluted with FVIII from the anion exchange columns. In the second step of purification, when Sepharose 6FF was used, 70% of FVIII activity was recovered free from vitamin K-dependent factors.


Asunto(s)
Biotecnología/métodos , Factor VIII/aislamiento & purificación , Plasma/química , Tecnología Farmacéutica/métodos , Resinas de Intercambio Aniónico , Cromatografía en Gel , Cromatografía por Intercambio Iónico/métodos , Humanos
2.
Braz J Microbiol ; 45(4): 1117-29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25763014

RESUMEN

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.


Asunto(s)
Vacunas Bacterianas/inmunología , Portadores de Fármacos , Animales , Infecciones Bacterianas/prevención & control , Vacunas Bacterianas/genética , Humanos , Neoplasias/terapia , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
3.
Acta Trop ; 140: 193-201, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25240208

RESUMEN

The Schistosoma mansoni transcriptome revealed new members of the dynein light chain family (DLC/LC8). The antigenicity and immunogenicity of these proteins, and their potential as vaccine candidates were investigated. Two DLC genes (DLC12_JI392413.1 and DLC13_JI387686.1) were cloned and the recombinant proteins produced in E. coli. The immunization of mice with the rDLCs, using alhydrogel as adjuvant, resulted in high titers of antibodies, indicated that these proteins are highly immunogenic. The anti-DLCs antibodies presented cross reactivity with both recombinant antigens and also recognized proteins from S. mansoni adult worm extracts. The DLC12 and DLC13 immunized animals were challenged by infection with cercariae and a protective profile was observed in three different assays, with a significant decreased in worm burden, of 43% and 51% respectively, when compared to the non-vaccinated group. The granulomas formation due to egg retention in the hepatic tissues was evaluated 45 days after infection. Smaller granulomas were observed in the liver of DLC immunized animals, up to 70% reduction in comparison to the granulomas size in the non-vaccinated animals. Fifty-five days after infection, the average size of the hepatic granulomas was still 25-35% smaller in the DLCs vaccinated groups. The interference of DLC immunization on the hepatic granuloma formation may reflect the lower worm burden and consequent decrease on the number of eggs retained in the liver, resulting in lower pro-inflammatory level in the tissue. The protective effect of DLCs immunization, decreasing the worm burden and delaying the rate of granuloma formation, suggests that these antigens should be further studied as potential vaccine candidates.


Asunto(s)
Antígenos Helmínticos/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/prevención & control , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Vacunación , Vacunas de ADN/inmunología
4.
Braz. j. microbiol ; 45(4): 1117-1129, Oct.-Dec. 2014. tab
Artículo en Inglés | LILACS | ID: lil-741261

RESUMEN

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.


Asunto(s)
Animales , Humanos , Vacunas Bacterianas/inmunología , Portadores de Fármacos , Infecciones Bacterianas/prevención & control , Vacunas Bacterianas/genética , Neoplasias/terapia , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA