Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 10(8): 913-23, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16283393

RESUMEN

Yeasts lacking copper-zinc superoxide dismutase (sod1Delta) exhibit a broad range of phenotypes, many of which can be rescued by growth in the presence of high levels of ionic manganese. We undertook a comprehensive survey of the effects of manganese on wild-type and sod1Delta yeasts and found that 5 mM Mn2+ rescued all known growth-related phenotypes, such as slow growth in air, temperature sensitivity, specific amino acid auxotrophies, no growth in high oxygen, poor growth in nonfermentable carbon sources, and decreased stationary-phase survival. Iron-related phenotypes-elevated electron paramagnetic resonance detectable ("free") iron, decreased aconitase activity, and fragmenting vacuoles-as well as zinc sensitivity were also rescued. The activity of manganese superoxide dismutase remained constant or was reduced when the yeasts were grown in the presence of MnCl2, indicating that induction of this alternative superoxide dismutase is not the explanation. In contrast to MnCl2 treatment, addition of two manganese-containing superoxide dismutase mimetic compounds to the growth medium did not provide any rescue of sod1Delta yeast growth but rather had an sod1Delta-selective inhibitory effect at micromolar concentrations. Mechanisms by which ionic manganese can effect this rescue, while the mimetic compounds do not, are discussed.


Asunto(s)
Manganeso/farmacología , Oxígeno/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Eliminación de Gen , Hierro/análisis , Hierro/metabolismo , Manganeso/metabolismo , Oxígeno/toxicidad , Fenotipo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Temperatura , Vacuolas/metabolismo , Zinc/metabolismo , Zinc/farmacología
2.
J Biol Chem ; 278(33): 31325-30, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12794073

RESUMEN

Porphobilinogen synthase (PBGS) proteins fall into several distinct groups with different metal ion requirements. Drosophila melanogaster porphobilinogen synthase (DmPBGS) is the first non-mammalian metazoan PBGS to be characterized. The sequence shows the determinants for two zinc binding sites known to be present in both mammalian and yeast PBGS, proteins that differ in the exhibition of half-of-the-sites metal binding. The pH-dependent activity of DmPBGS is uniquely affected by zinc. A tight binding catalytic zinc binds at 0.5/subunit with a Kd well below microm. A second inhibitory zinc exhibits a Kd of approximately 5 microm and appears to bind at a stoichiometry of 1/subunit. A molecular model of DmPBGS suggests that the inhibitory zinc is located at a subunit interface using Cys-219 and His-10 as ligands. Zinc binding to this previously unknown inhibitory site is proposed to inhibit opening of the active site lid. As predicted, the DmPBGS mutant H10F is active but is not inhibited by zinc. H10F binds a catalytic zinc at 0.5/subunit and binds a second nonessential and noninhibitory zinc at 0.5/subunit. This result reveals a structural basis for half-of-the-sites metal binding that is consistent with a reciprocating motion model for function of oligomeric PBGS.


Asunto(s)
Drosophila melanogaster/enzimología , Porfobilinógeno Sintasa/química , Porfobilinógeno Sintasa/metabolismo , Zinc/metabolismo , Animales , Regulación Enzimológica de la Expresión Génica , Mutagénesis , Porfobilinógeno Sintasa/genética , Estructura Terciaria de Proteína , Especificidad de la Especie , Relación Estructura-Actividad
3.
J Biol Chem ; 277(22): 19792-9, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-11909869

RESUMEN

Porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of 5-aminolevulinic acid (ALA), an essential step in tetrapyrrole biosynthesis. 4-Oxosebacic acid (4-OSA) and 4,7-dioxosebacic acid (4,7-DOSA) are bisubstrate reaction intermediate analogs for PBGS. We show that 4-OSA is an active site-directed irreversible inhibitor for Escherichia coli PBGS, whereas human, pea, Pseudomonas aeruginosa, and Bradyrhizobium japonicum PBGS are insensitive to inhibition by 4-OSA. Some variants of human PBGS (engineered to resemble E. coli PBGS) have increased sensitivity to inactivation by 4-OSA, suggesting a structural basis for the specificity. The specificity of 4-OSA as a PBGS inhibitor is significantly narrower than that of 4,7-DOSA. Comparison of the crystal structures for E. coli PBGS inactivated by 4-OSA versus 4,7-DOSA shows significant variation in the half of the inhibitor that mimics the second substrate molecule (A-side ALA). Compensatory changes occur in the structure of the active site lid, which suggests that similar changes normally occur to accommodate numerous hybridization changes that must occur at C3 of A-side ALA during the PBGS-catalyzed reaction. A comparison of these with other PBGS structures identifies highly conserved active site water molecules, which are isolated from bulk solvent and implicated as proton acceptors in the PBGS-catalyzed reaction.


Asunto(s)
Ácidos Decanoicos/farmacología , Inhibidores Enzimáticos/farmacología , Porfobilinógeno Sintasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Electrones , Escherichia coli/enzimología , Escherichia coli/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Pisum sativum/enzimología , Unión Proteica
4.
J Biol Chem ; 279(31): 32055-62, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15166213

RESUMEN

Among the phenotypes of Saccharomyces cerevisiae mutants lacking CuZn-superoxide dismutase (Sod1p) is an aerobic lysine auxotrophy; in the current work we show an additional leaky auxotrophy for leucine. The lysine and leucine biosynthetic pathways each contain a 4Fe-4S cluster enzyme homologous to aconitase and likely to be superoxide-sensitive, homoaconitase (Lys4p) and isopropylmalate dehydratase (Leu1p), respectively. We present evidence that direct aerobic inactivation of these enzymes in sod1 Delta yeast results in the auxotrophies. Located in the cytosol and intermembrane space of the mitochondria, Sod1p likely provides direct protection of the cytosolic enzyme Leu1p. Surprisingly, Lys4p does not share a compartment with Sod1p but is located in the mitochondrial matrix. The activity of a second matrix protein, the tricarboxylic acid cycle enzyme aconitase, was similarly lowered in sod1 Delta mutants. We measured only slight changes in total mitochondrial iron and found no detectable difference in mitochondrial "free" (EPR-detectable) iron making it unlikely that a gross defect in mitochondrial iron metabolism is the cause of the decreased enzyme activities. Thus, we conclude that when Sod1p is absent a lysine auxotrophy is induced because Lys4p is inactivated in the matrix by superoxide that originates in the intermembrane space and diffuses across the inner membrane.


Asunto(s)
Aminoácidos/biosíntesis , Proteínas Hierro-Azufre/química , Superóxido Dismutasa/química , Superóxidos/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Genotipo , Hidroliasas/química , Hierro/química , Leucina/química , Lisina/química , Mitocondrias/metabolismo , Modelos Biológicos , Mutación , Paraquat , Fenotipo , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxidos/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA