Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomaterials ; 150: 150-161, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29040875

RESUMEN

Predictive testing of anticancer drugs remains a challenge. Bioengineered systems, designed to mimic key aspects of the human tumor microenvironment, are now improving our understanding of cancer biology and facilitating clinical translation. We show that mechanical signals have major effects on cancer drug sensitivity, using a bioengineered model of human bone sarcoma. Ewing sarcoma (ES) cells were studied within a three-dimensional (3D) matrix in a bioreactor providing mechanical loadings. Mimicking bone-like mechanical signals within the 3D model, we rescued the ERK1/2-RUNX2 signaling pathways leading to drug resistance. By culturing patient-derived tumor cells in the model, we confirmed the effects of mechanical signals on cancer cell survival and drug sensitivity. Analyzing human microarray datasets, we showed that RUNX2 expression is linked to poor survival in ES patients. Mechanical loadings that activated signal transduction pathways promoted drug resistance, stressing the importance of introducing mechanobiological cues into preclinical tumor models for drug screening.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Mecanotransducción Celular , Sarcoma de Ewing/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Materiales Biomiméticos/metabolismo , Reactores Biológicos , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones SCID , Análisis de Supervivencia , Ingeniería de Tejidos , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3561-4, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737062

RESUMEN

In vivo, cells reside in a complex environment regulating their fate and function. Most of this complexity is lacking in standard in vitro models, leading to readouts falling short of predicting the actual in vivo situation. The use of engineering tools, combined with deep biological knowledge, leads to the development and use of bioreactors providing biologically sound niches. Such bioreactors offer new tools for biological research, and are now also entering the field of cancer research. Here we present the development and validation of a modular bioreactor system providing: (i) high throughput analyses, (ii) a range of biological conditions, (iii) high degree of control, and (iv) application of physiological stimuli to the cultured samples. The bioreactor was used to engineer a three-dimensional (3D) tissue model of cancer, where the effects of mechanical stimulation on the tumor phenotype were evaluated. Mechanical stimuli applied to the engineered tumor model activated the mechanotransduction machinery and resulted in measurable changes of mRNA levels towards a more aggressive tumor phenotype.


Asunto(s)
Reactores Biológicos , Neoplasias Óseas/patología , Ingeniería de Tejidos/instrumentación , Microambiente Tumoral , Biofisica , Diseño de Equipo , Humanos , Mecanotransducción Celular/fisiología , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA