Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Virol ; 98(8): e0073724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39016551

RESUMEN

Facilitates chromatin transcription (FACT) interacts with nucleosomes to promote gene transcription by regulating the dissociation and reassembly of nucleosomes downstream and upstream of RNA polymerase II (Pol II). A previous study reported that herpes simplex virus 1 (HSV-1) regulatory protein ICP22 interacted with FACT and was required for its recruitment to the viral DNA genome in HSV-1-infected cells. However, the biological importance of interactions between ICP22 and FACT in relation to HSV-1 infection is unclear. Here, we mapped the minimal domain of ICP22 required for its efficient interaction with FACT to a cluster of five basic amino acids in ICP22. A recombinant virus harboring alanine substitutions in this identified cluster led to the decreased accumulation of viral mRNAs from UL54, UL38, and UL44 genes, reduced Pol II occupancy of these genes in MRC-5 cells, and impaired HSV-1 virulence in mice following ocular or intracranial infection. Furthermore, the treatment of mice infected with wild-type HSV-1 with CBL0137, a FACT inhibitor currently being investigated in clinical trials, significantly improved the survival rate of mice. These results suggested that the interaction between ICP22 and FACT was required for efficient HSV-1 gene expression and pathogenicity. Therefore, FACT might be a potential therapeutic target for HSV-1 infection.IMPORTANCEICP22 is a well-known regulatory factor of HSV-1 gene expression, but its mechanism(s) are poorly understood. Although the interaction of FACT with ICP22 was reported previously, its significance in HSV-1 infection is unknown. Given that FACT is involved in gene transcription, it is of interest to investigate this interaction as it relates to HSV-1 gene expression. To determine a direct link between the interaction and HSV-1 infection, we mapped a minimal domain of ICP22 required for its efficient interaction with FACT and generated a recombinant virus carrying mutations in the identified domain. Using the recombinant virus, we obtained evidence suggesting that the interaction between ICP22 and FACT promoted Pol II transcription from HSV-1 genes and viral virulence in mice. In addition, CBL0137, an inhibitor of FACT, effectively protected mice from lethal HSV-1 infection, suggesting FACT might be a potential target for the development of novel anti-HSV drugs.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Animales , Ratones , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Herpes Simple/virología , Herpes Simple/metabolismo , Humanos , Células Vero , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Chlorocebus aethiops , Replicación Viral , Virulencia , Línea Celular , Femenino , Ratones Endogámicos BALB C , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética
2.
J Virol ; 98(7): e0074724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38819171

RESUMEN

Although the herpes simplex virus type 1 (HSV-1) genome was thought to contain approximately 80 different protein coding sequences (CDSs), recent multi-omics analyses reported HSV-1 encodes more than 200 potential CDSs. However, few of the newly identified CDSs were confirmed to be expressed at the peptide or protein level in HSV-1-infected cells. Furthermore, the impact of the proteins they encode on HSV-1 infection is largely unknown. This study focused on a newly identified CDS, UL31.6. Re-analyzation of our previous chemical proteomics data verified that UL31.6 was expressed at the peptide level in HSV-1-infected cells. Antisera raised against a viral protein encoded by UL31.6 (pUL31.6) reacted with a protein with an approximate molecular mass of 37 kDa in lysates of Vero cells infected with each of three HSV-1 strains. pUL31.6 was efficiently dissociated from virions in high-salt solution. A UL31.6-null mutation had a minimal effect on HSV-1 gene expression, replication, cell-to-cell spread, and morphogenesis in Vero cells; in contrast, it significantly reduced HSV-1 cell-to-cell spread in three neural cells but not in four non-neural cells including Vero cells. The UL31.6-null mutation also significantly reduced the mortality and viral replication in the brains of mice after intracranial infection, but had minimal effects on pathogenic manifestations in and around the eyes, and viral replication detected in the tear films of mice after ocular infection. These results indicated that pUL31.6 was a tegument protein and specifically acted as a neurovirulence factor by potentially promoting viral transmission between neuronal cells in the central nervous system.IMPORTANCERecent multi-omics analyses reported the herpes simplex virus type 1 (HSV-1) genome encodes an additional number of potential coding sequences (CDSs). However, the expressions of these CDSs at the peptide or protein levels and the biological effects of these CDSs on HSV-1 infection remain largely unknown. This study annotated a cryptic orphan CDS, termed UL31.6, an HSV-1 gene that encodes a tegument protein with an approximate molecular mass of 37 kDa, which specifically acts as a neurovirulence factor. Our study indicates that HSV-1 proteins important for viral pathogenesis remain to be identified and a comprehensive understanding of the pathogenesis of HSV-1 will require not only the identification of cryptic orphan CDSs using emerging technologies but also step-by-step and in-depth analyses of each of the cryptic orphan CDSs.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Replicación Viral , Animales , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 1/fisiología , Chlorocebus aethiops , Células Vero , Ratones , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Herpes Simple/virología , Virulencia , Femenino , Humanos
3.
Microbiol Immunol ; 68(4): 148-154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402407

RESUMEN

More than 100 different herpes simplex virus 1 (HSV-1) genes belong to three major classes, and their expression is coordinately regulated and sequentially ordered in a cascade. This complex HSV-1 gene expression is thought to be regulated by various viral and host cellular proteins. A host cellular protein, Myb-binding protein 1A (MYBBP1A), has been reported to be associated with HSV-1 viral genomes in conjunction with viral and cellular proteins critical for DNA replication, repair, and transcription within infected cells. However, the role(s) of MYBBP1A in HSV-1 infections remains unclear. In this study, we examined the effects of MYBBP1A depletion on HSV-1 infection and found that MYBBP1A depletion significantly reduced HSV-1 replication, as well as the accumulation of several viral proteins. These results suggest that MYBBP1A is an important host cellular factor that contributes to HSV-1 replication, plausibly by promoting viral gene expression.


Asunto(s)
Proteínas de Unión al ADN , Herpes Simple , Herpesvirus Humano 1 , Proteínas de Unión al ARN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Herpes Simple/virología , Herpesvirus Humano 1/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/genética , Proteínas Virales/farmacología , Replicación Viral
4.
J Virol ; 96(24): e0142922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448808

RESUMEN

We investigated whether A-type lamins (lamin A/C) and lamin B receptor (LBR) are redundant during herpes simplex virus 1 (HSV-1) infection in HeLa cells expressing lamin A/C and LBR. Lamin A/C and LBR double knockout (KO) in HSV-1-infected HeLa cells significantly impaired expressions of HSV-1 early and late genes, maturation of replication compartments, marginalization of host chromatin to the nuclear periphery, enlargement of host cell nuclei, and viral DNA replication. Phenotypes of HSV-1-infected HeLa cells were restored by the ectopic expression of lamin A/C or LBR in lamin A/C and LBR double KO cells. Of note, lamin A/C single KO, but not LBR single KO, promoted the aberrant accumulation of virus particles outside the inner nuclear membrane (INM) and viral replication, as well as decreasing the frequency of virus particles inside the INM without affecting viral gene expression and DNA replication, time-spatial organization of replication compartments and host chromatin, and nuclear enlargement. These results indicated that lamin A/C and LBR had redundant and specific roles during HSV-1 infection. Thus, lamin A/C and LBR redundantly regulated the dynamics of the nuclear architecture, including the time-spatial organization of replication compartments and host chromatin, as well as promoting nuclear enlargement for efficient HSV-1 gene expression and DNA replication. In contrast, lamin A/C inhibited HSV-1 nuclear export through the INM during viral nuclear egress, which is a unique property of lamin A/C. IMPORTANCE This study demonstrated that lamin A/C and LBR had redundant functions associated with HSV-1 gene expression and DNA replication by regulating the dynamics of the nuclear architecture during HSV-1 infection. This is the first report to demonstrate the redundant roles of lamin A/C and LBR as well as the involvement of LBR in the regulation of these viral and cellular features in HSV-1-infected cells. These findings provide evidence for the specific property of lamin A/C to inhibit HSV-1 nuclear egress, which has long been considered but without direct proof.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Laminas , Humanos , Cromatina/metabolismo , Replicación del ADN , ADN Viral/genética , ADN Viral/metabolismo , Células HeLa , Herpes Simple/genética , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas/genética , Laminas/metabolismo , Replicación Viral , Receptor de Lamina B
5.
J Virol ; 96(2): e0170421, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730397

RESUMEN

During the nuclear export of nascent nucleocapsids of herpesviruses, the nucleocapsids bud through the inner nuclear membrane (INM) by acquiring the INM as a primary envelope (primary envelopment). We recently reported that herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), which consists of UL34 and UL31, interacts with an endosomal sorting complex required for transport III (ESCRT-III) adaptor ALIX and recruits ESCRT-III machinery to the INM for efficient primary envelopment. In this study, we identified a cluster of six arginine residues in the disordered domain of UL34 as a minimal region required for the interaction with ALIX, as well as the recruitment of ALIX and an ESCRT-III protein CHMP4B to the INM in HSV-1-infected cells. Mutations in the arginine cluster exhibited phenotypes similar to those with ESCRT-III inhibition reported previously, including the mislocalization of NEC, induction of membranous invagination structures containing enveloped virions, aberrant accumulation of enveloped virions in the invaginations and perinuclear space, and reduction of viral replication. We also showed that the effect of the arginine cluster in UL34 on HSV-1 replication was dependent primarily on ALIX. These results indicated that the arginine cluster in the disordered domain of UL34 was required for the interaction with ALIX and the recruitment of ESCRT-III machinery to the INM to promote primary envelopment. IMPORTANCE Herpesvirus UL34 homologs contain conserved amino-terminal domains that mediate vesicle formation through interactions with UL31 homologs during primary envelopment. UL34 homologs also comprise other domains adjacent to their membrane-anchoring regions, which differ in length, are variable in herpesviruses, and do not form distinguished secondary structures. However, the role of these disordered domains in infected cells remains to be elucidated. In this study, we present data suggesting that the arginine cluster in the disordered domain of HSV-1 UL34 mediates the interaction with ALIX, thereby leading to the recruitment of ESCRT-III machinery to the INM for efficient primary envelopment. This is the first study to report the role of the disordered domain of a UL34 homolog in herpesvirus infections.


Asunto(s)
Arginina , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas Virales/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Morfogénesis , Mutación , Membrana Nuclear/metabolismo , Nucleocápside/metabolismo , Fosforilación , Proteínas Virales/química , Proteínas Virales/genética , Virión/crecimiento & desarrollo , Liberación del Virus , Replicación Viral
6.
J Virol ; 96(10): e0030622, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35475666

RESUMEN

This study developed a system consisting of two rounds of screening cellular proteins involved in the nuclear egress of herpes simplex virus 1 (HSV-1). Using this system, we first screened cellular proteins that interacted with the HSV-1 nuclear egress complex (NEC) consisting of UL34 and UL31 in HSV-1-infected cells, which are critical for the nuclear egress of HSV-1, by tandem affinity purification coupled with mass spectrometry-based proteomics technology. Next, we performed CRISPR/Cas9-based screening of live HSV-1-infected reporter cells under fluorescence microscopy using single guide RNAs targeting the cellular proteins identified in the first proteomic screening to detect the mislocalization of the lamin-associated protein emerin, which is a phenotype for defects in HSV-1 nuclear egress. This study focused on a cellular orphan transporter SLC35E1, one of the cellular proteins identified by the screening system. Knockout of SLC35E1 reduced HSV-1 replication and induced membranous invaginations containing perinuclear enveloped virions (PEVs) adjacent to the nuclear membrane (NM), aberrant accumulation of PEVs in the perinuclear space between the inner and outer NMs and the invagination structures, and mislocalization of the NEC. These effects were similar to those of previously reported mutation(s) in HSV-1 proteins and depletion of cellular proteins that are important for HSV-1 de-envelopment, one of the steps required for HSV-1 nuclear egress. Our newly established screening system enabled us to identify a novel cellular protein required for efficient HSV-1 de-envelopment. IMPORTANCE The identification of cellular protein(s) that interact with viral effector proteins and function in important viral procedures is necessary for enhancing our understanding of the mechanics of various viral processes. In this study, we established a new system consisting of interactome screening for the herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), followed by loss-of-function screening to target the identified putative NEC-interacting cellular proteins to detect a defect in HSV-1 nuclear egress. This newly established system identified SLC35E1, an orphan transporter, as a novel cellular protein required for efficient HSV-1 de-envelopment, providing an insight into the mechanisms involved in this viral procedure.


Asunto(s)
Herpesvirus Humano 1 , Proteínas de Transporte de Membrana , Liberación del Virus , Animales , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Humanos , Proteínas de Transporte de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares , Proteómica , Células Vero , Proteínas Virales/metabolismo
7.
Microbiol Immunol ; 67(3): 114-119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36606601

RESUMEN

Wild-type herpes simplex virus (HSV) strains infrequently mediate cell-cell fusion in cell cultures and barely induce large multinucleated cells. In this study, we established a system to quantify infrequent cell-cell fusion induced by wild-type HSV strains. The established system clarified that the HSV-1 envelope glycoprotein B and its N-glycosylation at asparagine at position 141 were required for efficient cell-cell fusion. This study provides a link between cell-cell fusion induced by wild-type HSV-1 and viral pathogenesis in vivo.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Glicosilación , Fusión Celular , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
8.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33298538

RESUMEN

AIM2 is a cytosolic DNA sensor of the inflammasome, which induces critical innate immune responses against various invading pathogens. Earlier biochemical studies showed that the binding of AIM2 to DNA triggered the self-oligomerization of AIM2, which is essential for AIM2 inflammasome activation. We recently reported that VP22, a virion tegument protein of herpes simplex virus 1 (HSV-1), inhibited activation of the AIM2 inflammasome in HSV-1-infected cells by preventing AIM2 oligomerization. VP22 binds non-specifically to DNA; however, its role in HSV-1 replication is unclear. We investigated the role of VP22 DNA binding activity in the VP22-mediated inhibition of AIM2 inflammasome activation. We identified a VP22 domain encoded by amino acids 227 to 258 as the minimal domain required for its binding to DNA in vitro Consecutive alanine substitutions in this domain substantially impaired the DNA binding activity of VP22 in vitro and attenuated the inhibitory effect of VP22 on AIM2 inflammasome activation in an AIM2 inflammasome reconstitution system. The inhibitory effect of VP22 on AIM2 inflammasome activation was completely abolished in macrophages infected with a recombinant virus harboring VP22 with one of the consecutive alanine substitutions, similar to the effect of a VP22-null mutant virus. These results suggested that the DNA binding activity of VP22 is critical for VP22-mediated AIM2 inflammasome activation in HSV1-infected cells.IMPORTANCE VP22, a major component of the HSV-1 virion tegument, is conserved in alphaherpesviruses and has structural similarity to ORF52, a component of the virion tegument that is well-conserved in gammaherpesviruses. Although the potential DNA binding activity of VP22 was discovered decades ago, its significance in the HSV-1 life cycle is poorly understood. Here, we show that the DNA binding activity of VP22 is critical for the inhibition of AIM2 inflammasome activation induced in HSV-1-infected cells. This is the first report to show a role for the DNA binding activity of VP22 in the HSV-1 life cycle, allowing the virus to evade AIM2 inflammasome activation, which is critical for its replication in vivo.

9.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177205

RESUMEN

Viral cell-to-cell spread, a method employed by several viral families for entrance via cell junctions, is highly relevant to the pathogenesis of various viral infections. Cell-to-cell spread of herpes simplex virus 1 (HSV-1) is known to depend greatly on envelope glycoprotein E (gE). However, the molecular mechanism by which gE acts in HSV-1 cell-to-cell spread and the mechanisms of cell-to-cell spread by other herpesviruses remain poorly understood. Here, we describe our identification of prohibitin-1 as a novel gE-interacting host cell protein. Ectopic expression of prohibitin-1 increased gE-dependent HSV-1 cell-to-cell spread. As observed with the gE-null mutation, decreased expression or pharmacological inhibition of prohibitin-1 reduced HSV-1 cell-to-cell spread without affecting the yield of virus progeny. Similar effects were produced by pharmacological inhibition of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, wherein prohibitin-1 acts as a protein scaffold and is required for induction of this pathway. Furthermore, artificial activation of the MAPK/ERK pathway restored HSV-1 cell-to-cell spread impaired by the gE-null mutation. Notably, pharmacological inhibition of prohibitins or the MAPK/ERK pathway reduced viral cell-to-cell spread of representative members in all herpesvirus subfamilies. Our results suggest that prohibitin-1 contributes to gE-dependent HSV-1 cell-to-cell spread via the MAPK/ERK pathway and that this mechanism is conserved throughout the Herpesviridae, whereas gE is conserved only in the Alphaherpesvirinae subfamily.IMPORTANCE Herpesviruses are ubiquitous pathogens of various animals, including humans. These viruses primarily pass through cell junctions to spread to uninfected cells. This method of cell-to-cell spread is an important pathogenic characteristic of these viruses. Here, we show that the host cell protein prohibitin-1 contributes to HSV-1 cell-to-cell spread via a downstream intracellular signaling cascade, the MAPK/ERK pathway. We also demonstrate that the role of the prohibitin-1-mediated MAPK/ERK pathway in viral cell-to-cell spread is conserved in representative members of every herpesvirus subfamily. This study has revealed a common molecular mechanism of the cell-to-cell spread of herpesviruses.


Asunto(s)
Comunicación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Represoras/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células A549 , Quinasas MAP Reguladas por Señal Extracelular/genética , Herpes Simple/genética , Herpes Simple/metabolismo , Humanos , Uniones Intercelulares , Proteínas Quinasas Activadas por Mitógenos/genética , Prohibitinas , Proteínas Represoras/genética , Proteínas del Envoltorio Viral/genética , Replicación Viral
10.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32611749

RESUMEN

Us3 proteins of herpes simplex virus 1 (HSV-1) and HSV-2 are multifunctional serine-threonine protein kinases. Here, we identified an HSV-2 tegument protein, UL7, as a novel physiological substrate of HSV-2 Us3. Mutations in HSV-2 UL7, which precluded Us3 phosphorylation of the viral protein, significantly reduced mortality, viral replication in the vagina, and development of vaginal disease in mice following vaginal infection. These results indicated that Us3 phosphorylation of UL7 in HSV-2 was required for efficient viral replication and pathogenicity in vivo Of note, this phosphorylation was conserved in UL7 of chimpanzee herpesvirus (ChHV), which phylogenetically forms a monophyletic group with HSV-2 and the resurrected last common ancestral UL7 for HSV-2 and ChHV. In contrast, the phosphorylation was not conserved in UL7s of HSV-1, which belongs to a sister clade of the monophyletic group, the resurrected last common ancestor for HSV-1, HSV-2, and ChHV, and other members of the genus Simplexvirus that are phylogenetically close to these viruses. Thus, evolution of Us3 phosphorylation of UL7 coincided with the phylogeny of simplex viruses. Furthermore, artificially induced Us3 phosphorylation of UL7 in HSV-1, in contrast to phosphorylation in HSV-2, had no effect on viral replication and pathogenicity in mice. Our results suggest that HSV-2 and ChHV have acquired and maintained Us3 phosphoregulation of UL7 during their evolution because the phosphoregulation had an impact on viral fitness in vivo, whereas most other simplex viruses have not because the phosphorylation was not necessary for efficient fitness of the viruses in vivoIMPORTANCE It has been hypothesized that the evolution of protein phosphoregulation drives phenotypic diversity across species of organisms, which impacts fitness during their evolution. However, there is a lack of information regarding linkage between the evolution of viral phosphoregulation and the phylogeny of virus species. In this study, we clarified the novel HSV-2 Us3 phosphoregulation of UL7 in infected cells, which is important for viral replication and pathogenicity in vivo We also showed that the evolution of Us3 phosphoregulation of UL7 was linked to the phylogeny of viruses that are phylogenetically close to HSV-2 and to the phosphorylation requirements for the efficient in vivo viral fitness of HSV-2 and HSV-1, which are representative of viruses that have and have not evolved phosphoregulation, respectively. This study reports the first evidence showing that evolution of viral phosphoregulation coincides with phylogeny of virus species and supports the hypothesis regarding the evolution of viral phosphoregulation during viral evolution.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Genital/virología , Herpesvirus Humano 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Evolución Molecular , Femenino , Aptitud Genética , Células HEK293 , Herpes Genital/mortalidad , Herpesvirus Humano 1/clasificación , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 2/clasificación , Herpesvirus Humano 2/metabolismo , Herpesvirus Humano 2/patogenicidad , Humanos , Ratones , Fosforilación , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vagina/virología , Células Vero , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo , Virulencia , Replicación Viral
11.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999028

RESUMEN

Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness.IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.


Asunto(s)
Citoplasma/virología , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Morfogénesis/fisiología , Fosfatidiletanolaminas/biosíntesis , Fosfatidiletanolaminas/fisiología , Animales , Chlorocebus aethiops , Citoplasma/metabolismo , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos ICR , Nucleocápside/metabolismo , ARN Nucleotidiltransferasas/genética , Células Vero , Virión/fisiología , Virulencia , Internalización del Virus , Liberación del Virus , Replicación Viral/fisiología
12.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391274

RESUMEN

During nuclear egress of nascent progeny herpesvirus nucleocapsids, the nucleocapsids acquire a primary envelope by budding through the inner nuclear membrane of infected cells into the perinuclear space between the inner and outer nuclear membranes. Herpes simplex virus 1 (HSV-1) UL34 and UL31 proteins form a nuclear egress complex (NEC) and play critical roles in this budding process, designated primary envelopment. To clarify the role of NEC binding to progeny nucleocapsids in HSV-1 primary envelopment, we established an assay system for HSV-1 NEC binding to nucleocapsids and capsid proteins in vitro Using this assay system, we showed that HSV-1 NEC bound to nucleocapsids and to capsid protein UL25 but not to the other capsid proteins tested (i.e., VP5, VP23, and UL17) and that HSV-1 NEC binding of nucleocapsids was mediated by the interaction of NEC with UL25. UL31 residues arginine-281 (R281) and aspartic acid-282 (D282) were required for efficient NEC binding to nucleocapsids and UL25. We also showed that alanine substitution of UL31 R281 and D282 reduced HSV-1 replication, caused aberrant accumulation of capsids in the nucleus, and induced an accumulation of empty vesicles that were similar in size and morphology to primary envelopes in the perinuclear space. These results suggested that NEC binding via UL31 R281 and D282 to nucleocapsids, and probably to UL25 in the nucleocapsids, has an important role in HSV-1 replication by promoting the incorporation of nucleocapsids into vesicles during primary envelopment.IMPORTANCE Binding of HSV-1 NEC to nucleocapsids has been thought to promote nucleocapsid budding at the inner nuclear membrane and subsequent incorporation of nucleocapsids into vesicles during nuclear egress of nucleocapsids. However, data to directly support this hypothesis have not been reported thus far. In this study, we have present data showing that two amino acids in the membrane-distal face of the HSV-1 NEC, which contains the putative capsid binding site based on the solved NEC structure, were in fact required for efficient NEC binding to nucleocapsids and for efficient incorporation of nucleocapsids into vesicles during primary envelopment. This is the first report showing direct linkage between NEC binding to nucleocapsids and an increase in nucleocapsid incorporation into vesicles during herpesvirus primary envelopment.


Asunto(s)
Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Nucleocápside/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Transporte Activo de Núcleo Celular , Sitios de Unión , Proteínas de la Cápside/genética , Núcleo Celular/genética , Núcleo Celular/virología , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleocápside/genética , Unión Proteica , Proteínas Virales/genética , Virión , Liberación del Virus
13.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31043535

RESUMEN

During the nuclear export of nascent nucleocapsids of herpes simplex virus 1 (HSV-1), the nucleocapsids acquire a primary envelope by budding through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes. This unique budding process, termed primary envelopment, is initiated by the nuclear egress complex (NEC), composed of the HSV-1 UL31 and UL34 proteins. Earlier biochemical approaches have shown that the NEC has an intrinsic ability to vesiculate membranes through the formation of a hexagonal lattice structure. The significance of intrahexamer interactions of the NEC in the primary envelopment of HSV-1-infected cells has been reported. In contrast, the contribution of lattice formation of the NEC hexamer to primary envelopment in HSV-1-infected cells remains to be elucidated. Therefore, we constructed and characterized a recombinant HSV-1 strain carrying an amino acid substitution in a UL31 residue that is an interhexamer contact site for the lattice formation of the NEC hexamer. This mutation was reported to destabilize the interhexamer interactions of the HSV-1 NEC. Here, we demonstrate that the mutation causes the aberrant accumulation of nucleocapsids in the nucleus and reduces viral replication in Vero and HeLa cells. Thus, the ability of HSV-1 to form the hexagonal lattice structure of the NEC was linked to an increase in primary envelopment and viral replication. Our results suggest that the lattice formation of the NEC hexamer has an important role in HSV-1 replication by regulating primary envelopment.IMPORTANCE The scaffolding proteins of several envelope viruses required for virion assembly form high-order lattice structures. However, information on the significance of their lattice formation in infected cells is limited. Herpesviruses acquire envelopes twice during their viral replication. The first envelop acquisition (primary envelopment) is one of the steps in the vesicle-mediated nucleocytoplasmic transport of nascent nucleocapsids, which is unique in biology. HSV-1 NEC, thought to be conserved in all members of the Herpesviridae family, is critical for primary envelopment and was shown to form a hexagonal lattice structure. Here, we investigated the significance of the interhexamer contact site for hexagonal lattice formation of the NEC in HSV-1-infected cells and present evidence suggesting that the lattice formation of the NEC hexamer has an important role in HSV-1 replication by regulating primary envelopment. Our results provide insights into the mechanisms of the envelopment of herpesviruses and other envelope viruses.


Asunto(s)
Núcleo Celular/virología , Herpesvirus Humano 1/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Herpes Simple/genética , Humanos , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Conejos , Células Vero , Proteínas Virales/genética
14.
J Virol ; 92(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976672

RESUMEN

Herpes simplex virus 1 (HSV-1) UL51 is a phosphoprotein that functions in the final envelopment in the cytoplasm and viral cell-cell spread, leading to efficient viral replication in cell cultures. To clarify the mechanism by which UL51 is regulated in HSV-1-infected cells, we focused on the phosphorylation of UL51. Mass spectrometry analysis of purified UL51 identified five phosphorylation sites in UL51. Alanine replacement of one of the identified phosphorylation sites in UL51, serine 184 (Ser-184), but not the other identified phosphorylation sites, significantly reduced viral replication and cell-cell spread in HaCaT cells. This mutation induced membranous invaginations adjacent to the nuclear membrane, the accumulation of primary enveloped virions in the invaginations and perinuclear space, and mislocalized UL34 and UL31 in punctate structures at the nuclear membrane; however, it had no effect on final envelopment in the cytoplasm of HaCaT cells. Of note, the alanine mutation in UL51 Ser-184 significantly reduced the mortality of mice following ocular infection. Phosphomimetic mutation in UL51 Ser-184 partly restored the wild-type phenotype in cell cultures and in mice. Based on these results, we concluded that some UL51 functions are specifically regulated by phosphorylation at Ser-184 and that this regulation is critical for HSV-1 replication in cell cultures and pathogenicity in vivoIMPORTANCE HSV-1 UL51 is conserved in all members of the Herpesviridae family. This viral protein is phosphorylated and functions in viral cell-cell spread and cytoplasmic virion maturation in HSV-1-infected cells. Although the downstream effects of HSV-1 UL51 have been clarified, there is a lack of information on how this viral protein is regulated as well as the significance of the phosphorylation of this protein in HSV-1-infected cells. In this study, we show that the phosphorylation of UL51 at Ser-184 promotes viral replication, cell-cell spread, and nuclear egress in cell cultures and viral pathogenicity in mice. This is the first report to identify the mechanism by which UL51 is regulated as well as the significance of UL51 phosphorylation in HSV-1 infection. Our study may provide insights into the regulatory mechanisms of other herpesviral UL51 homologs.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/fisiología , ADN Primasa/química , ADN Primasa/fisiología , Herpesvirus Humano 1/patogenicidad , Proteínas Virales/química , Proteínas Virales/fisiología , Liberación del Virus , Replicación Viral , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Chlorocebus aethiops , ADN Helicasas/genética , ADN Helicasas/aislamiento & purificación , ADN Primasa/genética , ADN Primasa/aislamiento & purificación , Ojo/virología , Células HEK293 , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas , Células Vero , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación , Virión/fisiología , Virulencia , Ensamble de Virus
15.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899106

RESUMEN

UL13 proteins are serine/threonine protein kinases encoded by herpes simplex virus 1 (HSV-1) and HSV-2. Although the downstream effects of the HSV protein kinases, mostly those of HSV-1 UL13, have been reported, there is a lack of information on how these viral protein kinases are regulated in HSV-infected cells. In this study, we used a large-scale phosphoproteomic analysis of HSV-2-infected cells to identify a physiological phosphorylation site in HSV-2 UL13 (i.e., Ser-18) and investigated the significance of phosphorylation of this site in HSV-2-infected cell cultures and mice. Our results were as follows. (i) An alanine substitution at UL13 Ser-18 (S18A) significantly reduced HSV-2 replication and cell-to-cell spread in U2OS cells to a level similar to those of the UL13-null and kinase-dead mutations. (ii) The UL13 S18A mutation significantly impaired phosphorylation of a cellular substrate of this viral protein kinase in HSV-2-infected U2OS cells. (iii) Following vaginal infection of mice, the UL13 S18A mutation significantly reduced mortality, HSV-2 replication in the vagina, and development of vaginal disease to levels similar to those of the UL13-null and the kinase-dead mutations. (iv) A phosphomimetic substitution at UL13 Ser-18 significantly restored the phenotype observed with the UL13 S18A mutation in U2OS cells and mice. Collectively, our results suggested that phosphorylation of UL13 Ser-18 regulated UL13 function in HSV-2-infected cells and that this regulation was critical for the functional activity of HSV-2 UL13 in vitro and in vivo and also for HSV-2 replication and pathogenesis.IMPORTANCE Based on studies on cellular protein kinases, it is obvious that the regulatory mechanisms of protein kinases are as crucial as their functional consequences. Herpesviruses each encode at least one protein kinase, but the mechanism by which these kinases are regulated in infected cells remains to be elucidated, with a few exceptions, although information on their functional effects has been accumulating. In this study, we have shown that phosphorylation of the HSV-2 UL13 protein kinase at Ser-18 regulated its function in infected cells, and this regulation was critical for HSV-2 replication and pathogenesis in vivo UL13 is conserved in all members of the family Herpesviridae, and this is the first report clarifying the regulatory mechanism of a conserved herpesvirus protein kinase that is involved in viral replication and pathogenesis in vivo Our study may provide insight into the regulatory mechanisms of the other conserved herpesvirus protein kinases.


Asunto(s)
Herpesvirus Humano 2/fisiología , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Herpes Genital/patología , Herpes Genital/virología , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/patogenicidad , Humanos , Ratones , Fosforilación , Proteínas Quinasas/genética , Internalización del Virus , Liberación del Virus , Replicación Viral
16.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28356536

RESUMEN

Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM.IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Calnexina/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Proteína-1 Reguladora de Fusión/metabolismo , Herpesvirus Humano 1/química , Humanos , Mutación , Membrana Nuclear/fisiología , Membrana Nuclear/virología , Nucleocápside/metabolismo , Unión Proteica , Células Vero , Proteínas Virales/genética , Ensamble de Virus , Liberación del Virus , Replicación Viral
17.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28679756

RESUMEN

VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization.IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Humano 1/fisiología , Nucleocápside/metabolismo , Ensamble de Virus , Animales , Proteínas de la Cápside/genética , Línea Celular , Técnicas de Inactivación de Genes
18.
J Virol ; 90(15): 6738-6745, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170756

RESUMEN

UNLABELLED: p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). IMPORTANCE: HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis.


Asunto(s)
Encéfalo/patología , Encefalitis por Herpes Simple/metabolismo , Encefalitis por Herpes Simple/mortalidad , Simplexvirus/patogenicidad , Proteína p53 Supresora de Tumor/fisiología , Replicación Viral , Animales , Encéfalo/metabolismo , Encéfalo/virología , Encefalitis por Herpes Simple/patología , Encefalitis por Herpes Simple/virología , Femenino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Tasa de Supervivencia
19.
J Virol ; 90(6): 3173-86, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26739050

RESUMEN

UNLABELLED: To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) regulatory protein ICP0 promotes viral gene expression and replication, we screened cells overexpressing ICP0 for ICP0-binding host cell proteins. Tandem affinity purification of transiently expressed ICP0 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP0 interacted with cell protein RanBP10, a known transcriptional coactivator, in HSV-1-infected cells. Knockdown of RanBP10 in infected HEp-2 cells resulted in a phenotype similar to that observed with the ICP0-null mutation, including reduction in viral replication and in the accumulation of viral immediate early (ICP27), early (ICP8), and late (VP16) mRNAs and proteins. In addition, RanBP10 knockdown or the ICP0-null mutation increased the level of histone H3 association with the promoters of these viral genes, which is known to repress transcription. These effects observed in wild-type HSV-1-infected HEp-2 RanBP10 knockdown cells or those observed in ICP0-null mutant virus-infected control HEp-2 cells were remarkably increased in ICP0-null mutant virus-infected HEp-2 RanBP10 knockdown cells. Our results suggested that ICP0 and RanBP10 redundantly and synergistically promoted viral gene expression by regulating chromatin remodeling of the HSV-1 genome for efficient viral replication. IMPORTANCE: Upon entry of herpesviruses into a cell, viral gene expression is restricted by heterochromatinization of the viral genome. Therefore, HSV-1 has evolved multiple mechanisms to counteract this epigenetic silencing for efficient viral gene expression and replication. HSV-1 ICP0 is one of the viral proteins involved in counteracting epigenetic silencing. Here, we identified RanBP10 as a novel cellular ICP0-binding protein and showed that RanBP10 and ICP0 appeared to act synergistically to promote viral gene expression and replication by modulating viral chromatin remodeling. Our results provide insight into the mechanisms by which HSV-1 regulates viral chromatin remodeling for efficient viral gene expression and replication.


Asunto(s)
Regulación Viral de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral , Línea Celular , Células Epiteliales/virología , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Herpesvirus Humano 1/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma/análisis , Ubiquitina-Proteína Ligasas/genética
20.
J Virol ; 88(5): 2775-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24352467

RESUMEN

UNLABELLED: Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE: Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. Here, we report that Us3 phosphorylation of viral dUTPase (vdUTPase) at serine 187 (Ser-187), which has been shown to promote the vdUTPase activity, appears to be critical for viral virulence in the CNS but not for pathogenic effects in peripheral sites. Since HSV proteins critical for viral virulence in the CNS are, in almost all cases, also involved in viral pathogenicity at peripheral sites, this phosphorylation event is a unique report of a specific mechanism involved in HSV-1 virulence in the CNS.


Asunto(s)
Sistema Nervioso Central/virología , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Pirofosfatasas/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Activación Enzimática , Femenino , Genoma Viral , Herpes Simple/mortalidad , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Humanos , Ratones , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Pirofosfatasas/genética , Conejos , Células Vero , Proteínas Virales/genética , Virulencia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA