Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 241(3): 1021-1034, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897156

RESUMEN

Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak. Using modeling, we estimated species interaction effects on timing to drought-induced mortality and the underlying mechanisms driving these impacts. We show that mixtures mitigate adverse heat and drought impacts for oak (less negative leaf water potential, higher stomatal conductance, and delayed stomatal closure) but enhance them for beech (lower water potential and stomatal conductance, narrower leaf safety margins, faster tree mortality). Potential underlying mechanisms include oak's larger canopy and higher transpiration, allowing for quicker exhaustion of soil water in mixtures. Our findings highlight that diversity has the potential to alter the effects of extreme events, which would ensure that some species persist even if others remain sensitive. Among the many processes driving diversity effects, differences in canopy size and transpiration associated with the stomatal regulation strategy seem the primary mechanisms driving mortality vulnerability in mixed seedling plantations.


Asunto(s)
Fagus , Quercus , Plantones , Calor , Sequías , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Árboles , Agua/fisiología
2.
J Exp Bot ; 75(10): 3141-3152, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38375924

RESUMEN

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.


Asunto(s)
Aclimatación , Bosques , Pinus sylvestris , Agua , Pinus sylvestris/fisiología , Pinus sylvestris/anatomía & histología , Pinus sylvestris/crecimiento & desarrollo , Agua/metabolismo , Agua/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Riego Agrícola , Sequías , Árboles/fisiología , Árboles/anatomía & histología
3.
Glob Chang Biol ; 30(8): e17439, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092538

RESUMEN

Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.


Asunto(s)
Estomas de Plantas , Quercus , Termotolerancia , Quercus/fisiología , Estomas de Plantas/fisiología , España , Suiza , Francia , Hojas de la Planta/fisiología , Fotosíntesis , Temperatura , Estaciones del Año , Agua , Calor , Sequías
4.
New Phytol ; 240(1): 127-137, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37483100

RESUMEN

Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (Tcrit ), temperature and photosynthetic optima (Topt and Aopt ), and canopy temperature (Tcan ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and Tcan regulation. In this study, we measured the effect of soil moisture on the seasonal and diurnal dynamics of net photosynthesis (A), stomatal conductance (gs ), and Tcan , as well as the thermal plasticity of photosynthesis (Tcrit , Topt , and Aopt ), over the course of 1 yr using a long-term irrigation experiment in a drought-prone Pinus sylvestris forest in Switzerland. Irrigation resulted in higher needle-level A, gs , Topt , and Aopt compared with naturally drought-exposed trees. No daily or seasonal differences in Tcan were observed between treatments. Trees operated below their thermal thresholds (Tcrit ), independently of soil moisture content. Despite strong Tcan and Tair coupling, we provide evidence that drought reduces trees' temperature optimum due to a substantial reduction of gs during warm and dry periods of the year. These findings provide important insights regarding the effects of soil drought on the thermal tolerance of P. sylvestris.


Asunto(s)
Pinus sylvestris , Pinus , Pinus sylvestris/fisiología , Suelo , Temperatura , Hojas de la Planta/fisiología , Bosques , Fotosíntesis/fisiología , Árboles/fisiología , Sequías , Pinus/fisiología
5.
Plant Cell Environ ; 45(11): 3275-3289, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030547

RESUMEN

Temperature (T) and vapour pressure deficit (VPD) are important drivers of plant hydraulic conductivity, growth, mortality, and ecosystem productivity, independently of soil water availability. Our goal was to disentangle the effects of T and VPD on plant hydraulic responses. Young trees of Fagus sylvatica L., Quercus pubescens Willd. and Quercus ilex L. were exposed to a cross-combination of a T and VPD manipulation under unlimited soil water availability. Stem hydraulic conductivity and leaf-level hydraulic traits (e.g., gas exchange and osmotic adjustment) were tracked over a full growing season. Significant loss of xylem conductive area (PLA) was found in F. sylvatica and Q. pubescens due to rising VPD and T, but not in Q. ilex. Increasing T aggravated the effects of high VPD in F. sylvatica only. PLA was driven by maximum hydraulic conductivity and minimum leaf conductance, suggesting that high transpiration and water loss after stomatal closure contributed to plant hydraulic stress. This study shows for the first time that rising VPD and T lead to losses of stem conductivity even when soil water is not limiting, highlighting their rising importance in plant mortality mechanisms in the future.


Asunto(s)
Quercus , Suelo , Sequías , Ecosistema , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Poliésteres , Quercus/fisiología , Temperatura , Presión de Vapor , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA