Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35455340

RESUMEN

The COVID-19 pandemic has led the world to undertake the largest vaccination campaign in human history. In record time, unprecedented scientific and governmental efforts have resulted in the acquisition of immunizers utilizing different technologies (nucleotide acids, viral vectors, inactivated and protein-based vaccines). Currently, 33 vaccines have already been approved by regulatory agencies in different countries, and more than 10 billion doses have been administered worldwide. Despite the undeniable impact of vaccination on the control of the pandemic, the recurrent emergence of new variants of interest has raised new challenges. The recent viral mutations precede new outbreaks that rapidly spread at global proportions. In addition, reducing protective efficacy rates have been observed among the main authorized vaccines. Besides these issues, several other crucial issues for the appropriate combatting of the pandemic remain uncertain or under investigation. Particularly noteworthy issues include the use of vaccine-boosting strategies to increase protection; concerns related to the long-term safety of vaccines, child immunization reliability and uncommon adverse events; the persistence of the virus in society; and the transition from a pandemic to an endemic state. In this review, we describe the updated scenario regarding SARS-CoV-2 variants and COVID-19 vaccines. In addition, we outline current discussions covering COVID-19 vaccine safety and efficacy, and the future pandemic perspectives.

2.
Sci Rep ; 12(1): 13019, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906472

RESUMEN

The development of new approaches for the decontamination of surfaces is important to deal with the processes related to exposure to contaminated surfaces. Therefore, was evaluated the efficacy of a disinfection technology using ozonized water (0.7-0.9 ppm of O3) on the surfaces of garments and accessories of volunteers, aiming to reduce the spread of microbial pathogens in the workplace and community. A Log10 microbial reduction of 1.72-2.40 was observed between the surfaces tested. The microbial reductions remained above 60% on most surfaces, and this indicated that the disinfection technology was effective in microbial log reduction regardless of the type of transport used by the volunteers and/or their respective work activities. In association with the evaluation of efficacy, the analysis of the perception of use (approval percentage of 92.45%) was fundamental to consider this technology as an alternative for use as a protective barrier, in conjunction with other preventive measures against microbiological infections, allowing us to contribute to the availability of proven effective devices against the spread of infectious agents in the environment.


Asunto(s)
Desinfectantes , Desinfección , Desinfectantes/farmacología , Humanos , Percepción , Tecnología , Agua
3.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835276

RESUMEN

In recent years, vaccine development using ribonucleic acid (RNA) has become the most promising and studied approach to produce safe and effective new vaccines, not only for prophylaxis but also as a treatment. The use of messenger RNA (mRNA) as an immunogenic has several advantages to vaccine development compared to other platforms, such as lower coast, the absence of cell cultures, and the possibility to combine different targets. During the COVID-19 pandemic, the use of mRNA as a vaccine became more relevant; two out of the four most widely applied vaccines against COVID-19 in the world are based on this platform. However, even though it presents advantages for vaccine application, mRNA technology faces several pivotal challenges to improve mRNA stability, delivery, and the potential to generate the related protein needed to induce a humoral- and T-cell-mediated immune response. The application of mRNA to vaccine development emerged as a powerful tool to fight against cancer and non-infectious and infectious diseases, for example, and represents a relevant research field for future decades. Based on these advantages, this review emphasizes mRNA and self-amplifying RNA (saRNA) for vaccine development, mainly to fight against COVID-19, together with the challenges related to this approach.

4.
Biology (Basel) ; 10(6)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204772

RESUMEN

O3 dissolved in water (or ozonized water) has been considered a potent antimicrobial agent, and this study aimed to test this through microbiological and in vitro assays. The stability of O3 was accessed following modifications of the physicochemical parameters of water, such as the temperature and pH, with or without buffering. Three concentrations of O3 (0.4, 0.6, and 0.8 ppm) dissolved in water were tested against different microorganisms, and an analysis of the cytotoxic effects was also conducted using the human ear fibroblast cell line (Hfib). Under the physicochemical conditions of 4 °C and pH 5, O3 remained the most stable and concentrated compared to pH 7 and water at 25 °C. Exposure to ozonized water resulted in high mortality rates for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Scanning electron micrograph images indicate that the effects on osmotic stability due to cell wall lysis might be one of the killing mechanisms of ozonized water. The biocidal agent was biocompatible and presented no cytotoxic effect against Hfib cells. Therefore, due to its cytocompatibility and biocidal action, ozonized water can be considered a viable alternative for microbial control, being possible, for example, its use in disinfection processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA