Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 153, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659026

RESUMEN

BACKGROUND: Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS: 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS: In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.


Asunto(s)
Córnea , Helio , Gases em Plasma , Animales , Porcinos , Córnea/efectos de los fármacos , Gases em Plasma/farmacología , Gases em Plasma/uso terapéutico , Fenómenos Biomecánicos , Álcalis , Presión Atmosférica , Úlcera de la Córnea/veterinaria , Úlcera de la Córnea/terapia
2.
Artif Organs ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895983

RESUMEN

BACKGROUND: The standard artificial urinary sphincter (AUS) is an implantable device for the treatment of urinary incontinence by applying a pressure loading around the urethra through an inflatable cuff, often inducing no-physiological stimulation up to tissue degenerative phenomena. A novel in silico approach is proposed to fill the gap of the traditional procedures by providing tools to quantitatively assess AUS reliability and performance based on AUS-urethra interaction. METHODS: The approach requires the development of 3D numerical models of AUS and urethra, and experimental investigations to define their mechanical behaviors. Computational analyses are performed to simulate the urethral lumen occlusion by AUS inflation under different pressures, and the lumen opening by applying an intraluminal pressure progressively increased under the AUS action (Abaqus Explicit solver). The AUS reliability is evaluated in terms of tissue stimulation by the mechanical fields potentially responsible for vasoconstriction and tissue damage, while the performance by the intraluminal pressure that causes the lumen opening for a specific occlusive pressure, showing the maximum urethral pressure for which continence is guaranteed. RESULTS: The present study implemented the procedure considering the gold standard AMS 800 and a novel patented AUS. Results provided the comparison between two sphincteric devices and the evaluation of the influence of different building materials and geometrical features on the AUS functionality. CONCLUSIONS: The approach was developed for the AUS, but it could be adapted also to artificial sphincters for the treatment of other anatomical dysfunctions, widening the analyzable device configurations and reducing experimental and ethical efforts.

3.
Artif Organs ; 47(4): 617-639, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36374175

RESUMEN

Artificial sphincters (ASs) are used to replace the function of the biological sphincters in case of severe urinary and fecal incontinence (UI and FI), and gastroesophageal reflux disease (GERD). The design of ASs is established on different mechanisms, e.g., magnetic forces or hydraulic pressure, with the final goal to achieve a implantable and durable AS. In clinical practice, the implantation of in-commerce AS is considered a reasonable solution, despite the sub-optimal clinical outcomes. The failure of these surgeries is due to the malfunction of the devices (between 46 and 51%) or the side effects on the biological tissues (more than 38%), such as infection and atrophy. Concentrating on this latter characteristic, particular attention has been given to the interaction between the biological tissues and AS, pointing out the closing mechanism around the duct and the effect on the tissues. To analyze this aspect, an overview of existing commercial/ready-on-market ASs for GERD, UI, and FI, together with the clinical outcomes available from the in-commerce AS, is given. Moreover, this invited review discusses ongoing developments and future research pathways for creating novel ASs. The application of engineering principles and design concepts to medicine enhances the quality of healthcare and improves patient outcomes. In this context, computational methods represent an innovative solution in the design of ASs, proving data on the occlusive force and pressure necessary to guarantee occlusion and avoid tissue damage, considering the coupling between different device sizes and individual variability.


Asunto(s)
Incontinencia Fecal , Incontinencia Urinaria , Esfínter Urinario Artificial , Humanos , Incontinencia Fecal/cirugía , Prótesis e Implantes , Incontinencia Urinaria/cirugía
4.
Phys Eng Sci Med ; 47(2): 403-441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598066

RESUMEN

Healthy cornea guarantees the refractive power of the eye and the protection of the inner components, but injury, trauma or pathology may impair the tissue shape and/or structural organization and therefore its material properties, compromising its functionality in the ocular visual process. It turns out that biomechanical research assumes an essential role in analysing the morphology and biomechanical response of the cornea, preventing pathology occurrence, and improving/optimising treatments. In this review, ex vivo, in vivo and in silico methods for the corneal mechanical characterization are reported. Experimental techniques are distinct in testing mode (e.g., tensile, inflation tests), samples' species (human or animal), shape and condition (e.g., healthy, treated), preservation methods, setup and test protocol (e.g., preconditioning, strain rate). The meaningful results reported in the pertinent literature are discussed, analysing differences, key features and weaknesses of the methodologies adopted. In addition, numerical techniques based on the finite element method are reported, incorporating the essential steps for the development of corneal models, such as geometry, material characterization and boundary conditions, and their application in the research field to extend the experimental results by including further relevant aspects and in the clinical field for diagnostic procedure, treatment and planning surgery. This review aims to analyse the state-of-art of the bioengineering techniques developed over the years to study the corneal biomechanics, highlighting their potentiality to improve diagnosis, treatment and healing process of the corneal tissue, and, at the same, pointing out the current limits in the experimental equipment and numerical tools that are not able to fully characterize in vivo corneal tissues non-invasively and discourage the use of finite element models in daily clinical practice for surgical planning.


Asunto(s)
Simulación por Computador , Córnea , Córnea/fisiología , Humanos , Fenómenos Biomecánicos , Animales , Análisis de Elementos Finitos , Modelos Biológicos
5.
Comput Methods Programs Biomed ; 238: 107594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207463

RESUMEN

BACKGROUND AND OBJECTIVE: In the field of urology, the pressure-flow study (PFS) is an essential urodynamics practise which requires the patient's transurethral catheterization during the voiding phase of micturition to evaluate the functionality of the lower urinary tract (LUT) and reveal the pathophysiology of its dysfunctionality. However, the literature evidences confusion regarding the interference of the catheterization on the urethral pressure-flow behaviour. METHODS: The present research study represents the first Computational Fluid-Dynamics (CFD) approach to this urodynamics issue, analysing the influence of a catheter in the male LUT through case studies which included the inter-individual and intra-individual dependence. A set of four three dimensional (3D) models of the male LUT, different in urethral diameters, and a set of three 3D models of the transurethral catheter, diverse in calibre, were developed leading to 16 CFD non-catheterized either catheterized configurations, to describe the typical micturition scenario considering both urethra and catheter characteristics. RESULTS: The developed CFD simulations showed that the urine flow field during micturition was influenced by the urethral cross-sectional area and each catheter determined a specific decrease in flow rate if compared to the relative free uroflow. CONCLUSIONS: In-silico methods allow to analyse relevant urodynamics aspects, which could not be investigated in vivo, and may support the clinical PFS to reduce uncertainty on urodynamic diagnosis.


Asunto(s)
Uretra , Vejiga Urinaria , Humanos , Masculino , Micción/fisiología , Catéteres , Urodinámica/fisiología
6.
Life (Basel) ; 14(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38255682

RESUMEN

Urinary incontinence is still an underestimated problem due to its anatomical complexity and social taboo. Most of the time, it is believed to affect predominantly the elderly female population, and the literature still lacks data on its presence in the younger and male populations. Its relationship with other pelvic floor dysfunctions (PFDs) and sport activity remains an open topic. Thus, the present study surveyed 342 subjects of both genders, ranging from 18 to 39 y/o and with different sport activity levels, to understand the prevalence of PFDs (such as haemorrhoids, anal fissures, involuntary urinary/faecal leakage, and urgency). The results also showed a significative prevalence in younger, sporty, and male people. Approximately one third of the population had urinary incontinence mostly during stress activities (sport activity: 17%, cough/sneeze: 13%). The statistical analysis confirmed a higher prevalence in the cases of a light (32%) and intense (41%) sport activity level and a protective role of sport if practiced between 5 and 10 h/week, with bodybuilding/CrossFit and running seeming to be the riskiest sports. The relationship with the other PFDs showed a statistically significant dependence with most of them, confirming that urinary incontinence cannot be considered a separate problem from the other PFDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA