Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Small ; : e2402942, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975677

RESUMEN

Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.

2.
ACS Nano ; 18(35): 23842-23875, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39173133

RESUMEN

Machine learning (ML) using data sets of atomic and molecular force fields (FFs) has made significant progress and provided benefits in the fields of chemistry and material science. This work examines the interactions between chemistry and materials computational science at the atomic and molecular scales for metal-organic framework (MOF) adsorbent development toward carbon dioxide (CO2) capture. Herein, a connection will be drawn between atomic forces predicted by ML algorithms and the structures of MOFs for CO2 adsorption. Our study also takes into account the successes of atomic computational screening in the field of materials science, especially quantum ML, and its relationship to ML algorithms that clarify advancements in the area of CO2 adsorption by MOFs. Additionally, we reviewed the processes for supplying data to ML algorithms for algorithm training, including text mining from scientific articles, and MOF's formula processing linked to the chemical properties of MOFs. To create ML algorithms for future research, we recommend that the digitization of scientific records can help efficiently synthesize advanced MOFs. Finally, a future vision for developing pioneer MOF synthesis routes for CO2 capture is presented in this review article.

3.
PLoS One ; 19(7): e0304684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985698

RESUMEN

To effectively remove Diazinon (DZ), Amoxicillin (AMX), and Crystal Violet (CV) from aquatic environments, a novel granular activated carbon (GAC) modified with Polyethylene glycol 600 (PEG) was created and manufactured. The chemical properties were investigated using a variety of characteristic analyses, including FT-IR, XRD, FESEM, and N2 adsorption/desorption. The effectiveness of GAC-PEG's adsorption for the removal of DZ, AMX, and CV was assessed under a variety of conditions, including a pH of 4-9 for the solution, 0.003-0.05 g doses of adsorbent, 50-400 ppm starting concentration, and a reaction time of 5-25 min. For DZ, AMX, and CV adsorption, the maximum adsorption capacity (Qmax) was 1163.933, 1163.100, and 1150.300 mg g-1, respectively. The Langmuir isotherm described all of the data from these adsorption experiments, and the pseudo-second-order well explains all-adsorption kinetics. Most contacts between molecules, electrostatic interactions, π-π interactions, hydrogen bonding, and entrapment in the modified CAG network were used to carry out the DZ, AMX, and CV adsorption on the GAC-PEG. The retrievability of the prepared adsorbent was successfully investigated in studies up to two cycles without loss of adsorption efficiency, and it was shown that it can be efficiently separated.


Asunto(s)
Carbón Orgánico , Polietilenglicoles , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Polietilenglicoles/química , Aguas Residuales/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Carbón Orgánico/química , Purificación del Agua/métodos , Amoxicilina/química , Concentración de Iones de Hidrógeno , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
4.
Environ Sci Pollut Res Int ; 30(2): 4166-4186, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35963972

RESUMEN

This research focuses on predicting the adsorbed amount of N2, O2, and N2O on carbon molecular sieve and activated carbon using the artificial neural network (ANN) approach. Experimental isotherm data (data set 1242) on adsorbent type, gas type, temperature, and pressure of the process adsorption were used as input datasets for network investigation utilizing the Sips and dual-site Langmuir isotherm models. The network's output has been used to assess the quantity of gas adsorbed. The Gaussian algorithm was applied as a single 98-neuron hidden layer from a radial based functions (RBF) approach, and the Bayesian regularization (BR) algorithm was used as a two-layer network deep learning from a multi-layer perceptron (MLP) approach utilizing 20 neurons. The MLP and RBF networks would have the best mean square error (MSE) after 98 and 100 epochs, respectively, validating efficiencies of 0.00008 and 0.00033, while the square of the coefficient of correlations (R2) was 0.9996 and 0.9993, respectively. The ANN weight matrix generated can accurately predict the adsorption process behavior of different carbon-based adsorbents under various process conditions for air separation and N2O adsorption. The results of this study have the potential to assist a wide range of process industries.


Asunto(s)
Carbón Orgánico , Redes Neurales de la Computación , Adsorción , Teorema de Bayes , Algoritmos
5.
Sci Rep ; 13(1): 4011, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899032

RESUMEN

In this research, artificial neural networks (ANN) and response surface methodology (RSM) were applied for modeling and optimization of carbon dioxide (CO2) absorption using KOH-Pz-CO2 system. In the RSM approach, the central composite design (CCD) describes the performance condition in accordance with the model using the least-squares technique. The experimental data was placed in second-order equations applying multivariate regressions and appraised applying analysis of variance (ANOVA). The p-value for all dependent variables was obtained to be less than 0.0001, indicating that all models were significant. Furthermore, the experimental values obtained for the mass transfer flux satisfactorily matched the model values. The R2 and Adj-R2 models are 0.9822 and 0.9795, respectively, which, it means that 98.22% of the variations for the NCO2 is explained by the independent variables. Since the RSM does not create any details about the quality of the solution acquired, the ANN method was applied as the global substitute model in optimization problems. The ANNs are versatile utensils that can be utilized to model and anticipate different non-linear and involved processes. This article addresses the validation and improvement of an ANN model and describes the most frequently applied experimental plans, about their restrictions and generic usages. Under different process conditions, the developed ANN weight matrix could successfully forecast the behavior of the CO2 absorption process. In addition, this study provides methods to specify the accuracy and importance of model fitting for both methodologies explained herein. The MSE values for the best integrated MLP and RBF models for the mass transfer flux were 0.00019 and 0.00048 in 100 epochs, respectively.

6.
Sci Rep ; 13(1): 4515, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934146

RESUMEN

In the present study, fabrications of two eco-friendly superhydrophobic/superoleophilic recyclable foamy-based adsorbents for oil/water mixture separation were developed. Hierarchically biomass (celery)-derived porous carbon (PC) and multi-walled carbon nanotube (MWCNT) were firstly synthesized and loaded on pristine melamine foam (MF) by the simple dip-coating approach by combining silicone adhesive to create superhydrophobic/superoleophilic, recyclable, and reusable three-dimensional porous structure. The prepared samples have a large specific surface area of 240 m2/g (MWCNT), 1126 m2/g (PC), and good micro-mesoporous frameworks. The water contact angle (WCA) values of the as-prepared foams, PC/MF and MWCNT/MF, not only were 159.34° ± 1.9° and 156.42° ± 1.6°, respectively but also had oil contact angle (OCA) of equal to 0° for a wide range of oils and organic solvents. Therefore, PC/MF and MWCNT/MF exhibited superhydrophobicity and superoleophilicity properties, which can be considered effective adsorbents in oil/water mixture separations. In this context, superhydrophobic/superoleophilic prepared foams for kind of different oils and organic solvents were shown to have superior separation performance ranges of 54-143 g/g and 46-137 g/g for PC/MF and MWCNT/MF, respectively, suggesting a new effective porous material for separating oil spills. Also, outstanding recyclability and reusability of these structures in the ten adsorption-squeezing cycles indicated that the WCA and sorption capacity has not appreciably changed after soaking into acidic (pH = 2) and alkaline (pH = 12) as well as saline (3.5% NaCl) solutions. More importantly, the reusability and chemical durability of the superhydrophobic samples made them good opportunities for use in different harsh conditions for oil-spill cleanup.

7.
Adv Sci (Weinh) ; 10(36): e2304289, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37908147

RESUMEN

As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.

8.
ACS Omega ; 7(22): 18409-18426, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694455

RESUMEN

A volumetric system was used to assess carbon-based adsorbents for evaluation of the gas separation, equilibrium, and kinetics of oxygen (O2), nitrogen (N2), and carbon dioxide (CO2) adsorption on granular activated carbon (GAC) and functionalized GAC at 298, 308, and 318 K under pressures up to 10 bar. The effects of ZnCl2, pH, arrangement of the pores, and heat-treatment temperature on the adsorptive capabilities of O2, N2, and CO2 were evaluated. High-performance O2 adsorption resulted with a fine sample (GAC-10-500) generated with a 0.1 wt % loading of ZnCl2. The optimal sample structure and morphology were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, and powder X-ray diffraction. On the basis of the adsorption-desorption results, the fine GAC provides a surface area of 719 m2/g. Moreover, it possessed an average pore diameter of 1.69 nm and a micropore volume of 0.27 m3/g. At 298 K, the adsorption capacity of the GAC-10-500 adsorbent improved by 19.75% for O2 but was not significantly increased for N2 and CO2. Isotherm and kinetic adsorption models were applied to select the model best matching the studied O2, N2, and CO2 gas uptake on GAC-10-500 adsorbent. At 298 K and 10 bar, the sip isotherm model with the highest potential adsorption difference sequence and gas adsorption difference compared with pure GAC adsorbent as O2 > N2 > CO2 follows well for GAC-10-500. Eventually, the optimal sample is more effective for O2 adsorption than other gases.

9.
Sci Rep ; 12(1): 8917, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618757

RESUMEN

Biomass-derived porous carbons have been considered one of the most effective adsorbents for CO2 capture, due to their porous structure and high specific surface area. In this study, we successfully synthesized porous carbon from celery biomass and examined the effect of external adsorption parameters including time, temperature, and pressure on CO2 uptake in experimental and molecular dynamics (MD) simulations. Furthermore, the influence of carbon's surface chemistry (carboxyl and hydroxyl functionalities) and nitrogen type on CO2 capture were investigated utilizing MD simulations. The results showed that pyridinic nitrogen has a greater tendency to adsorb CO2 than graphitic. It was found that the simultaneous presence of these two types of nitrogen has a greater effect on the CO2 sorption than the individual presence of each in the structure. It was also revealed that the addition of carboxyl groups (O=C-OH) to the carbon matrix enhances CO2 capture by about 10%. Additionally, by increasing the simulation time and the size of the simulation box, the average absolute relative error for simulation results of optimal structure declined to 16%, which is an acceptable value and makes the simulation process reliable to predict adsorption capacity under various conditions.


Asunto(s)
Dióxido de Carbono , Simulación de Dinámica Molecular , Adsorción , Biomasa , Carbono/química , Dióxido de Carbono/química , Nitrógeno/química , Porosidad
10.
Heliyon ; 7(6): e07261, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34189309

RESUMEN

Radiation as a consequence of jet fires is one of the significant parameters in process industry events. In the present work, the open field vertical propane jet fire was studied via experimental and computational fluid dynamics (CFD). The predicted values of radiation were verified at three locations in the horizontal direction from the jet fire. In the simulation section, four radiation models of Monte Carlo (MC), P-1, Discrete Transfer (DT), and Rosseland were applied to find the fine model for simulating the jet fire. Shear Stress Transport (SST) and Eddy Dissipation Concept (EDC) models are employed for combustion and turbulence, respectively. The estimated data by the simulation demonstrated that the MC radiation is better than the other models with an average error of 5% for predicted incident radiation from the jet flame axis. Also, the P-1 radiation model had an above 65% error at around the jet fire, but due to the error of less than 15% estimated by MC and DT models, these radiation models could simulate the jet flame radiation. The simulation outcomes proved that the Rosseland radiation model is not applicable owing to a lack of accurate temperature prediction.

11.
RSC Adv ; 11(57): 36125-36142, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35492770

RESUMEN

Biomass-derived porous carbons are the most common adsorbent materials for O2/N2 adsorption because of their excellent textural properties, high surface area, and low expense. A new synthesis method based on a self-activation technique was developed for a new green porous carbon adsorbent. This ecofriendly system was used for the synthesis of hierarchical porous carbons from walnut-shell precursors. The sorbent was successfully synthesized by facile one-step carbonization, with the activating reagents being gases released during the activation. The sample morphology and structure were characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, X-ray powder diffraction, thermogravimetric, and differential thermal analysis. The optimal porous carbons were synthesized at 1000 °C, providing a surface area as high as 2042.4 (m2 g-1) and micropore volume of about 0.499 (m3 g-1). At 298 °K under 9.5 bar pressure, the potential for O2/N2 separation using porous carbon samples was studied, and the sips isotherms with the highest adsorption potential were determined to be 2.94 (mmol g-1) and 2.67 (mmol g-1), respectively. The sample exhibited stable O2/N2 separation over ten cycles, showing high reusability for air separation. Finally, the technology described presents a promising strategy for producing eco-friendly porous carbon from a variety of biomass on an industrial scale.

12.
RSC Adv ; 12(1): 546-560, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35424508

RESUMEN

Oxygen and nitrogen enriched micro-meso porous carbon powders have been prepared from pectin and melamine as oxygen and nitrogen containing organic precursors, respectively. The synthesis process has been performed following a solvothermal approach in an alkaline solution during which Pluronic F127 was added to the solution as the soft template. Following the solvothermal treatment, the carbonization process has been performed at 700, 850 and 950 °C. The synthesized porous carbons have been characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms and Fourier transform infrared spectroscopy (FTIR). The surface area of 499.5 m2 g-1, total pore volume of 0.35 cm3 g-1, and a high nitrogen and oxygen content of 9.3 and 29.1 wt% are displayed for the fine sample. The optimal porous carbon had CO2 adsorption of up to 3.1 mmol g-1 at 273 K at 1 bar owing to abundant basic nitrogen-containing functionalities and the valuable micro-meso porous structure. Despite the absence of any reagent and also having a relatively moderate specific surface area, compared to similar materials, a very high ratio of adsorption capacity to specific surface area (6.2 µmol m-2) was observed. The Elovich kinetic model was found to be the best and the physisorption process was reported.

14.
Heliyon ; 6(11): e05511, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33294665

RESUMEN

Fires are important responsible factors to cause catastrophic events in the process industries, whose consequences usually initiate domino effects. The artificial neural network has been shown to be one of the rapid methods to simulate processes in the risk analysis field. In the present work, experimental data points on jet fire shape ratios, defined by the 800 K isotherm, have been applied for ANN development. The mass flow rates and the nozzle diameters of these jet flames have been considered as input dataset; while, the jet flame lengths and widths have been collected as output dataset by the ANN models. A Bayesian Regularization algorithm has been chosen as the three-layer backpropagation training from Multi-layer perceptron algorithm. Then it has been compared with a Radial based functions algorithm, based on single hidden layer. The optimized number of neurons in the first and second hidden layers of the MLP algorithm, and in the single hidden layer of the RBF algorithm has been found to be twenty and fifteen, respectively. The best MSE validation performance of MLP and RBF networks has been found to be 0.00286 and 0.00426 at 100 and 20 epochs, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA