Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 28(2): 1595-1602, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121867

RESUMEN

A highly sensitive method for detecting transient reflection in the extreme ultraviolet (XUV) region was developed on the basis of high-order harmonics for tracking carrier and coherent phonon dynamics. The use of lock-in detection and boxcar integration enables us to observe optical modulation (ΔR/R) as high as 1 × 10-4, and the data acquisition takes only four minutes. XUV transient reflections of bismuth exhibited exponential decay originating from excited carriers and periodic oscillation originating from A1g optical phonons. The linear power dependence of the electronic and phonon amplitudes indicated that one-photon excitation occurred under the experimental conditions. The cosine of the initial phase of the phonon oscillation revealed that a displacive excitation mechanism contributed to phonon generation. The phonon parameters obtained by the XUV and NIR probes were consistent even though their penetration depths were different. The result indicated that the XUV and NIR pulses probe the same excited region, which should be near the surface due to the short penetration depth of the NIR pump pulses. The present highly sensitive means of detecting XUV transient reflections in solid-state materials could be utilized for detecting attosecond dynamics in the future.

2.
Opt Express ; 28(14): 21025-21034, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680150

RESUMEN

We demonstrate spatially resolved supercontinuum spectral phase interferometry with an isolated attosecond pulse (IAP). The measured spatial-spectral interferogram over the broadband region indicates a high degree of IAP coherence in both spatial and spectral domains. In addition, the spectral-delay interferogram shows periodic temporal oscillations over the full IAP continuous spectrum, which indicates high temporal coherence. The supercontinuum spectral phase interferometry with broadband IAP will contribute to exploring spatiotemporal dispersive electronic dynamics through phase-based spectroscopy in the future.

3.
Opt Express ; 18(25): 25887-95, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21164934

RESUMEN

A compact and robust Mach-Zehnder type interferometer coupled with the double optical gating technique provides tunable isolated attosecond pulses and streak field detection with fields centered at either 750 nm or 400 nm. Isolated attosecond pulses produced at 45 eV (with measured pulse duration of 114 ± 4 as) and 20 eV (with measured pulse duration of 395 ± 6 as) are temporally characterized with a 750 nm wavelength streak field. In addition, an isolated 118 ± 10 as pulse at 45 eV is measured with a 400 nm wavelength streak field. The interferometer design used herein provides broad flexibility for attosecond streak experiments, allowing pump and probe pulses to be specified independently. This capability is important for studying selected electronic transitions in atoms and molecules.


Asunto(s)
Interferometría/instrumentación , Refractometría/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización
4.
Opt Express ; 17(14): 12082-9, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19582124

RESUMEN

The dependence of the carrier-envelope (CE) phase of the pulses from a hollow-core fiber on the input laser energy was studied using two f-to- 2f interferometers. The CE phase in the in-loop f-to-2f interferometer was measured with the octave spanning white-light spectrum from the hollow-core fiber, whereas the out-of-loop interferometer was based on a sapphire plate. By modulating the input power of the in-loop interferometer and measuring the out-of-loop CE phase at the same time, the coupling coefficient between the measured CE phase and the laser energy for the hollow-core fiber was determined to be 128 mrad per 1% energy change .

5.
Opt Express ; 17(24): 21459-64, 2009 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-19997386

RESUMEN

The time delay between the pump and probe pulses in attosecond time-resolved experiments, such as attosecond streaking, is commonly introduced by splitting and recombining the two pulses in an interferometer. This technique suffers from instability in the optical path lengths of the two arms due to mechanical vibration of the optical elements and fluctuating environmental conditions. We present a technique with which the instability of the unconventional interferometer is suppressed while at the same time the time delay is controlled to within 20 as RMS using a feedback loop. Using this scheme, the streaked spectrogram of an attosecond pulse was measured.


Asunto(s)
Interferometría/métodos , Óptica y Fotónica , Espectrofotometría/métodos , Electrónica , Diseño de Equipo , Rayos Láser , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
6.
Opt Lett ; 34(16): 2390-2, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19684792

RESUMEN

We demonstrated the mapping of the spatial oscillation of electric fields in the transverse plane of a femtosecond Bessel-Gaussian laser beam from the first principle of classical electrodynamics. An attosecond burst of electrons for probing the electric force was placed in the Bessel beam through photoemission with single isolated 276 as extreme ultraviolet pulses. The direction reversal of the electric field in adjacent Bessel rings was directly confirmed by observing the momentum shift of the probe electrons.

7.
Opt Lett ; 34(21): 3337-9, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19881586

RESUMEN

Double optical gating of high-harmonic generation was used to obtain supercontinuous spectra in the extreme UV (XUV) region including the water window. The spectra supported a 16 as pulse duration that is below one atomic unit of time (24 as). The dependence of the gated spectra on the carrier-envelope phase of the laser provided evidence that isolated attosecond pulses were generated. In addition, to ensure the temporal coherence of the XUV light, the pulse shape and phase of isolated 107 as XUV pulses using a portion of the spectrum were characterized by attosecond streaking.

8.
Phys Rev Lett ; 103(18): 183901, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19905806

RESUMEN

Isolated attosecond pulses are powerful tools for exploring electron dynamics in matter. So far, such extreme ultraviolet pulses have only been generated using high power, few-cycle lasers, which are very difficult to construct and operate. We propose and demonstrate a technique called generalized double optical gating for generating isolated attosecond pulses with 20 fs lasers from a hollow-core fiber and 28 fs lasers directly from an amplifier. These pulses, generated from argon gas, are measured to be 260 and 148 as by reconstructing the streaked photoelectron spectrograms. This scheme, with a relaxed requirement on laser pulse duration, makes attophysics more accessible to many laboratories that are capable of producing such multicycle laser pulses.

9.
Appl Opt ; 48(30): 5692-5, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19844302

RESUMEN

Carrier-envelope (CE) phase stabilization of a two-stage chirped pulse amplifier laser system with regenerative amplification as the preamplifier is demonstrated. The CE phase stability of this laser system is found to have a 90 mrad rms error averaged over 50 laser shots for a locking period of 4.5 h. The CE phase locking was confirmed unambiguously by experimental observation of the 2pi periodicity of the high-order harmonic spectrum generated by double optical gating.

10.
Appl Opt ; 48(7): 1303-7, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19252630

RESUMEN

White-light generation has been used widely in single-shot f-to-2f interferometers for stabilizing the carrier-envelope (CE) phase of laser amplifiers. The accuracy of the relative phase values measured by such an interferometer is affected by fluctuations in the laser pulse energy. A simple two-step model is proposed to explain the mechanism that couples the laser energy and the CE phase. The model explains the experimentally observed dependence of the group delay between the f and the 2f pulses on the laser energy, as well as the CE phase shift caused by the pulse energy variation.

11.
Opt Express ; 16(19): 14448-55, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794981

RESUMEN

Previously, pulses shorter than 4 fs were generated by compressing white light from gas-filled hollow-core fibers with adaptive phase modulators; however, the energy of the few-cycle pulses was limited to 15 microJ. Here, we report the generation of 550 microJ, 5 fs pulses by using a liquid crystal spatial light modulator in a grating-based 4f system. The high pulse energy was obtained by improving the throughput of the phase modulator and by increasing the input laser energy. When the pulses were used in high harmonic generation, it was found that the harmonic spectra depend strongly on the high order spectral phases of the driving laser fields.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Rayos Láser , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
12.
Nat Commun ; 9(1): 1468, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670122

RESUMEN

Lightwave-field-induced ultrafast electric dipole oscillation is promising for realizing petahertz (1015 Hz: PHz) signal processing in the future. In building the ultrahigh-clock-rate logic operation system, one of the major challenges will be petahertz electron manipulation accompanied with multiple frequencies. Here we study multi-petahertz interference with electronic dipole oscillations in alumina with chromium dopant (Cr:Al2O3). An intense near-infrared lightwave-field induces multiple electric inter-band polarizations, which are characterized by Fourier transform extreme ultraviolet attosecond spectroscopy. The interference results from the superposition state of periodic dipole oscillations of 667 to 383 attosecond (frequency of 1.5 to 2.6 PHz) measured by direct time-dependent spectroscopy and consists of various modulations on attosecond time scale through individual electron dephasing times of the Cr donor-like and Al2O3 conduction band states. The results indicate the possible manipulation of petahertz interference signal with multiple dipole oscillations using material band engineering and such a control will contribute to the study of ultrahigh-speed signal operation.

13.
Opt Express ; 14(23): 11468-76, 2006 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19529565

RESUMEN

It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.

14.
Nat Commun ; 5: 5599, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25510971

RESUMEN

In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light.

15.
Phys Rev Lett ; 100(10): 103906, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18352191

RESUMEN

We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.

16.
Opt Lett ; 32(7): 796-8, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17339940

RESUMEN

For f-to-2f interferometers based on white-light generation in sapphire plates, the accuracy of the carrier-envelope (CE) phase measurement and stabilization is affected by the laser energy fluctuation. The coupling coefficient between the CE phase and the laser energy has been determined by modulating the pulse energy in an in-loop f-to-2f interferometer while measuring the CE phase variation with an out-loop interferometer. When the total spectral phase measured by the in-loop interferometer was locked, a 1% change in laser energy caused a 160 mrad shift in the CE phase of the output pulses.

17.
Appl Opt ; 45(3): 573-7, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16463745

RESUMEN

The focusability of multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions is described, together with the design and performance of the ellipsoidal mirror used for this purpose. The mirror focuses intense coherent light in the spectral-region from 25 to 40 nm into a 2.4 microm spot size with a focused peak intensity of 6 x 10(13) W/cm2. The focal images indicate that a good beam profile is obtained with a near-Gaussian distribution and a beam quality factor (M2 value) as low as 2.4.

18.
Opt Lett ; 29(16): 1927-9, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15357362

RESUMEN

We investigate the focusability of intense coherent soft-x-ray radiation generated by high-order harmonic conversion. The 27th-harmonic wave at 29.6 nm is focused by an off-axis parabolic mirror with a SiC/Mg multilayer coating. Focal-spot images are observed from the visible fluorescence induced by the soft-x-ray photons on a Ce:YAG scintillator. We demonstrate focusing of the soft-x-ray beam to a 1-microm spot size with a peak intensity of 1 x 10(14) W/cm2, which is to our knowledge the highest ever reported in the soft-x-ray region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA