Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemistry ; 30(35): e202400956, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38619503

RESUMEN

Actinides are inherently radioactive; thus, ionizing radiation is emitted by these elements can have profound effects on its surrounding chemical environment through the formation of free radical species. While previous work has noted that the presence of free radicals in the system impacts the redox state of the actinides, there is little atomistic understanding of how these metal cations interact with free radicals. Herein, we explore the effects of radiation (UV and γ) on three U(VI) trinitrate complexes, M[UO2(NO3)3] (where M=K+, Rb+, Cs+), and their respective nitrate salts in the solid state via electron paramagnetic resonance (EPR) and Raman spectroscopy paired with Density Functional Theory (DFT) methods. We find that the alkali salts form nitrate radicals under UV and γ irradiation, but also note the presence of additional degradation products. M[UO2(NO3)3] solids also form nitrate radicals and additional DFT calculations indicate the species corresponds to a change from the bidentate bound nitrate anion into a monodentate NO3 • radical. Computational studies also highlight the need to include the second sphere coordination environment around the [UO2(NO3)3]0,1 species to gain agreement between the experimental and predicted EPR signatures.

2.
Inorg Chem ; 62(35): 14318-14325, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37610833

RESUMEN

A significant number of solid-state [UO2Cl4]2- coordination compounds have been synthesized and structurally characterized. Yet, despite their purposive relative abundance in aqueous solutions, characterization of aquachlorouranium(VI) complexes remain rare. In the current study, a solid-state uranyl aqua chloro complex ((C4H12N2)2[UO2Cl4(H2O)]Cl2) was synthesized using piperazinium as a charge-balancing ligand, and the structure was determined using single-crystal X-ray diffraction. Using periodic density functional theory, the electronic structure of the [UO2Cl4(H2O)]2- complex was compared to [UO2Cl4]2- to uncover the strengthening of the U═O bond in [UO2Cl4(H2O)]2-. Changes in the strength of the U═O bond were validated further with Raman and IR spectroscopy, where uranyl symmetrical (ν1) and asymmetrical (ν3) stretches were blue-shifted compared to the reference [UO2Cl4]2- complex. Furthermore, the formation energy of the solid-state (C4H12N2)2[UO2Cl4(H2O)]Cl2 complex was calculated to be -287.60 ± 1.75 kJ mol-1 using isothermal acid calorimetry. The demonstrated higher stability relative to the related [UO2Cl4]2- complex was related to the relative stoichiometry of the counterions.

3.
Inorg Chem ; 62(1): 372-380, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36538814

RESUMEN

Solid-state uranyl hybrid structures are often formed through unique intermolecular interactions occurring between a molecular uranyl anion and a charge-balancing cation. In this work, solid-state structures of the uranyl tetrachloride anion engaged in uranyl-cation and uranyl-hydrogen interactions were studied using density functional theory (DFT). As most first-principles methods used for systems of this type focus primarily on the molecular structure, we present an extensive benchmarking study to understand the methods needed to accurately model the geometric properties of these systems. From there, the electronic and vibrational structures of the compounds were investigated through projected density of states and phonon analysis and compared to the experiment. Lastly, we present a DFT + thermodynamics approach to calculate the formation enthalpies (ΔHf) of these systems to directly relate to experimental values. Through this methodology, we were able to accurately capture trends observed in experimental results and saw good quantitative agreement in predicted ΔHf compared to the value calculated through referencing each structure to its standard state. Overall, results from this work will be used for future combined experimental and computational studies on both uranyl and neptunyl hybrid structures to delineate how varying intermolecular interaction strengths relates to the overall values of ΔHf.

4.
Inorg Chem ; 62(15): 6055-6064, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37000037

RESUMEN

Neptunium makes up the largest percentage of minor actinides found in spent nuclear fuel, yet separations of this element have proven difficult due to its rich redox chemistry. Developing new reprocessing techniques should rely on understanding how to control the Np oxidation state and its interactions with different ligands. Designing new ligands for separations requires understanding how to properly tune a system toward a desired trait through functionalization. Emerging technologies for minor actinide separations focus on ligands containing carboxylate or pyridine functional groups, which are desirable due to their high degree of functionalization. Here, we use DFT calculations to study the interactions of carboxylate and polypyridine ligands with the neptunyl cation [Np(V/VI)O2]+/2+. A systematic study is performed by varying the electronic properties of the carboxylate and polypyridine ligands through the inclusion of different electron-withdrawing and electron-donating R groups. We focus on how these groups can affect geometric properties, electronic structure, and bonding characterization as a function of the metal oxidation state and ligand character and discuss how these factors can play a role in neptunium ligand design principles.

5.
Inorg Chem ; 62(42): 17265-17275, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37816161

RESUMEN

Noncovalent interactions (NCIs) can influence the stability and chemical properties of pentavalent and hexavalent actinyl (AnO2+/2+) compounds. In this work, the impact of NCIs (actinyl-hydrogen and actinyl-cation interactions) on the enthalpy of formation (ΔHf) and vibrational features was evaluated using Np(VI) tetrachloro compounds as the model system. We calculated the ΔHf values of these solid-state compounds through density functional theory+ thermodynamics (DFT+ T) and validated the results against experimental ΔHf values obtained through isothermal acid calorimetry. Three structural descriptors were evaluated to develop predictors for ΔHf, finding a strong link between ΔHf and hydrogen bond energy (EHtotal) for neptunyl-hydrogen interactions and total electrostatic attraction energy (Eelectrostatictotal) for neptunyl-cation interactions. Finally, we used Raman spectroscopy together with bond order analysis to probe Np=O bond perturbation due to NCIs. Our results showed a strong correlation between the degree of NCIs by axial oxygen and red-shifting of Np=O symmetrical stretch (ν1) wavenumbers and quantitatively demonstrated that NCIs can weaken the Np=O bond. These properties were then compared to those of related U(VI) and Np(V) phases to evaluate the effects of subtle differences in the NCIs and overall properties. In general, the outcomes of our study demonstrated the role of NCIs in stabilizing actinyl solid materials, which consequently governs their thermochemical behaviors and vibrational signatures.

6.
Angew Chem Int Ed Engl ; 62(33): e202305073, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37177866

RESUMEN

Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [ E H , norm total ${{E}_{H,{\rm { norm}}}^{{\rm { total}}}}$ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation between E H , norm total ${E_{{\rm{H}},{\rm{norm}}}^{{\rm{total}}} }$ and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.

7.
Inorg Chem ; 61(38): 15023-15036, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36099332

RESUMEN

Hydrogen bonding networks within hexavalent uranium materials are complex and may influence the overall physical and chemical properties of the system. This is particularly true if hydrogen bonding takes places between the donor and the oxo group associated with the uranyl cation (UO22+). In the current study, we evaluate the impact of charge-assisted hydrogen bonding on the vibrational modes of the uranyl cation using uranyl tricarbonate [UO2(CO3)3]4- interactions with [Co(NH3)6]3+ as the model system. Herein, we report the synthesis and structural characterization of five novel compounds, [Co(NH3)6]Cl(CO3) (Co_Cl_CO3), [Co(NH3)6]4[UO2(CO3)3]3(H2O)11.67 (Co4U3), [Co(NH3)6]3[UO2(CO3)3]2Cl (H2O)7.5 (Co3U2_Cl), [Co(NH3)6]2[UO2(CO3)3]Cl2 (Co2U_Cl), and [Co(NH3)6]2[UO2(CO3)3]CO3 (Co2U_CO3), which contain differences in the crystalline packing and extended hydrogen bonding networks. We show that these slight changes in the supramolecular assembly and hydrogen bonding networks result in the modification of modes as observed by infrared and Raman spectroscopy. We use density functional theory calculations to assign the vibrational modes and provide an understanding about how uranyl bond perturbation and changes in hydrogen bonding interactions can impact the resulting spectroscopic signals.

8.
J Chem Phys ; 154(6): 064303, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33588534

RESUMEN

Polyaluminum cations, such as the MAl12 Keggin, undergo atomic substitutions at the heteroatom site (M), where nanoclusters with M = Al3+, Ga3+, and Ge4+ have been experimentally studied. The identity of the heteroatom M has been shown to influence the structural and electronic properties of the nanocluster and the kinetics of ligand exchange reactions. To date, only three ε-analogs have been identified, and there is a need for a predictive model to guide experiment to the discovery of new MAl12 species. Here, we present a density functional theory (DFT) and thermodynamics approach to predicting favorable heteroatom substitution reactions, alongside structural analyses on hypothetical ε-MAl12 nanocluster models. We delineate trends in energetics and geometry based on heteroatom cation properties, finding that Al3+-O bond lengths are related to heteroatom cation size, charge, and speciation. Our analyses also enable us to identify potentially isolable new ε-MAl12 species, such as FeAl12 7+. Based upon these results, we evaluated the Al3+/Zn2+/Cr3+ system and determined that substitution of Cr3+ is unfavorable in the heteroatom site but is preferred for Zn2+, in agreement with the experimental structures. Complimentary experimental studies resulted in the isolation of Cr3+-substituted δ-Keggin species where Cr3+ substitution occurs only in the octahedral positions. The isolated structures Na[AlO4Al9.6Cr2.4(OH)24(H2O)12](2,6-NDS)4(H2O)22 (δ-CrnAl13-n-1) and Na[AlO4Al9.5Cr2.5(OH)24(H2O)12](2,7-NDS)4(H2O)18.5 (δ-CrnAl13-n-2) are the first pieces of evidence of mixed Al3+/Cr3+ Keggin-type nanoclusters that prefer substitution at the octahedral sites. The δ-CrnAl13-n-2 structure also exhibits a unique placement of the bound Na+ cation, which may indicate that Cr3+ substitution can alter the surface reactivity of Keggin-type species.

9.
Angew Chem Int Ed Engl ; 60(16): 8755-8759, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33482020

RESUMEN

Keggin-type polyaluminum cations belong to a unique class of compounds with their large positive charge, hydroxo bridges, and divergent isomerization/oligomerization. Previous reports indicated that oligomerization of this species can only occur through one isomer (δ), but herein we report the isolation of largest Keggin-type cluster that occurs through self-condensation of four ϵ-isomers ϵ-GeAl12 8+ to form [Ge4 O16 Al48 (OH)108 (H2 O)24 ]20+ cluster (Ge4 Al48 ). The cluster was crystallized and structurally characterized by single-crystal X-ray diffraction (SCXRD) and the elemental composition was confirmed by ICP-MS and SEM-EDS. Additional dynamic light scattering experiments confirms the presence of the Ge4 Al48 in thermally aged solutions. DFT calculations reveal that a single atom Ge substitution in tetrahedral site of ϵ-isomer is the key for the formation of Ge4 Al48 because it activates deprotonation at key surface sites that control the self-condensation process.

10.
Langmuir ; 36(44): 13166-13180, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32946243

RESUMEN

The inner-sphere adsorption of AsO43-, PO43-, and SO42- on the hydroxylated α-Al2O3(001) surface was modeled with the goal of adapting a density functional theory (DFT) and thermodynamics framework for calculating the adsorption energetics. While DFT is a reliable method for predicting various properties of solids, including crystalline materials comprised of hundreds (or even thousands) of atoms, adding aqueous energetics in heterogeneous systems poses steep challenges for modeling. This is in part due to the fact that environmentally relevant variations in the chemical surroundings cannot be captured atomistically without increasing the system size beyond tractable limits. The DFT + thermodynamics approach to this conundrum is to combine the DFT total energies with tabulated solution-phase data and Nernst-based corrective terms to incorporate experimentally tunable parameters such as concentration. Central to this approach is the design of thermodynamic cycles that partition the overall reaction (here, inner-sphere adsorption proceeding via ligand exchange) into elementary steps that can either be fully calculated or for which tabulated data are available. The ultimate goal is to develop a modeling framework that takes into account subtleties of the substrate (such as adsorption-induced surface relaxation) and energies associated with the aqueous environment such that adsorption at mineral-water interfaces can be reliably predicted, allowing for comparisons in the denticity and protonation state of the adsorbing species. Based on the relative amount of experimental information available for AsO43-, PO43-, and SO42- adsorbates and the well-characterized hydroxylated α-Al2O3(001) surface, these systems are chosen to form a basis for assessing the model predictions. We discuss how the DFT + thermodynamics results are in line with the experimental information about the oxyanion sorption behavior. Additionally, a vibrational analysis was conducted for the charge-neutral oxyanion complexes and is compared to the available experimental findings to discern the inner-sphere adsorption phonon modes. The DFT + thermodynamics framework used here is readily extendable to other chemical processes at solid-liquid interfaces, and we discuss future directions for modeling surface processes at mineral-water and environmental interfaces.

11.
Inorg Chem ; 59(15): 10461-10472, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32683862

RESUMEN

Keggin-type polyaluminum species (ε-Al13, δ-Al13, Al26, Al30, Al32) can form upon partial hydrolysis of Al3+-bearing solutions and are important species for water purification and contaminant transport. While the structural features for the major Al3+ polyaluminum species have been delineated, much less is known regarding heteroatom substitution and resultant structures other than the previously identified ε-GaAl127+ and ε-GeAl128+ cations. Single-atom substitution within polyaluminum species can change the surface reactivity within water treatment scenarios; thus, it is important to understand heteroatom incorporation within this system. The present work describes the synthesis and characterization of two novel Ga3+-substituted Keggin-type polyaluminum species. Na[GaO4Al12(OH)24(H2O)12](2,6-NDS)4(H2O)20.5 (δ-GaAl12) and [Ga2O8Al28.5Ga0.5(OH)58(H2O)27(SO4)2](SO4)4Cl7(H2O)8.5 (Ga2.5Al28.5) were crystallized from a thermally aged, partially hydrolyzed Ga3+/Al3+ solution. Structural refinement from single-crystal X-ray diffraction indicated fully occupied Ga3+ within tetrahedral site(s) of both isolated species. Partial substitution was observed for octahedral sites for the larger Ga2.5Al28.5 cluster. The chemical compositions of both clusters were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Density functional theory (DFT) calculations corroborated the structural refinement, with the energetics of Ga3+ substitution suggesting preferential substitution within tetrahedral sites for both species. Additional theoretical work suggests that the rotated trimer in δ-GaAl12 is highly reactive, which can serve as the driving force in the formation of the Ga2.5Al28.5 cluster.

12.
J Am Chem Soc ; 141(20): 8277-8288, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31038938

RESUMEN

Formation of functional monolayers on surfaces of carbon materials is inherently difficult because of the high bond strength of carbon and because common pathways such as SN2 mechanisms cannot take place at surfaces of solid materials. Here, we show that the radical initiators can selectively abstract H atoms from H-terminated carbon surfaces, initiating regioselective grafting of terminal alkenes to surfaces of diamond, glassy carbon, and polymeric carbon dots. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) demonstrate formation of self-terminating organic monolayers linked via the terminal C atom of 1-alkenes. Density functional theory (DFT) calculations suggest that this selectivity is at least partially thermodynamic in origin, as significantly less energy is needed to abstract H atoms from carbon surfaces as compared to typical aliphatic compounds. The regioselectivity favoring binding to the terminal C atom of the reactant alkenes arises from steric hindrance encountered in bond formation at the adjacent carbon atom. Our results demonstrate that carbon surface radical chemistry yields a versatile, selective, and scalable approach to monolayer formation on H-terminated carbon surfaces and provide mechanistic insights into the surface selectivity and regioselectivity of molecular grafting.


Asunto(s)
Alquenos/química , Radicales Libres/química , Nanodiamantes/química , Puntos Cuánticos/química , Peróxido de Benzoílo/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Modelos Químicos , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Termodinámica
13.
Molecules ; 24(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857228

RESUMEN

Terahertz (THz) spectroscopy has been put forth as a non-contact, analytical probe to characterize the intermolecular interactions of biologically active molecules, specifically as a way to understand, better develop, and use active pharmaceutical ingredients. An obstacle towards fully utilizing this technique as a probe is the need to couple features in the THz regions to specific vibrational modes and interactions. One solution is to use density functional theory (DFT) methods to assign specific vibrational modes to signals in the THz region, coupling atomistic insights to spectral features. Here, we use open source planewave DFT packages that employ ultrasoft pseudopotentials to assess the infrared (IR) response of organic compounds and complex co-crystal formulations in the solid state, with and without dispersion corrections. We compare our DFT computed lattice parameters and vibrational modes to experiment and comment on how to improve the agreement between theory and modeling to allow for THz spectroscopy to be used as an analytical probe in complex biologically relevant systems.


Asunto(s)
Espectroscopía de Terahertz/métodos , Cristalización , Enlace de Hidrógeno
14.
Inorg Chem ; 57(21): 13300-13311, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351064

RESUMEN

Compositional tuning of nanoscale complex metal oxides (CMOs) can lead to enhanced performance and favorable properties for a variety of energy-related applications. However, investigations of the nanoscale CMOs used in energy storage technologies demonstrate that these nanomaterials may have an adverse biological impact, highlighting a fundamental knowledge gap between nanomaterial design and the structure and properties at the end of life. CMO nanomaterials can enter the environment due to improper disposal, where they undergo subsequent (as of yet poorly understood) nanoscale transformations that may affect biological response and, ultimately, environmental fate. This points to the need for studies at the nano-bio interface that can be used to shape rules for the redesign of CMOs: materials that are are potentially more benign by design and serve as examples of sustainable nanotechnology. The example given here is to enrich lithium nickel manganese cobalt oxide, Li x(Ni yMn zCo1- y- z)O2 (NMC), with Mn to create a family of materials that are less expensive and potentially less toxic to a wide range of organisms. In this paper, we investigate the structure and electronic states of Mn-rich NMC at the density functional theory (DFT) level to elucidate the interplay of redox properties, oxidation state, and coordination environment of a compositionally tuned CMO. We find that the oxidation states of Ni and Co remain mostly unaffected while Mn exists as both Mn2+ and Mn4+. Our models show that the ratio of Mn2+ and Mn4+ varies with changes in the coordination environment, such as the identity of neighboring atoms and surface OH group coverage. The surface metal release properties of Mn-rich NMC compositions are predicted using a DFT + solvent ion model and show that Mn-rich NMC compositions are inherently more prone to dissolution than NMC and that this is attributed to the changes in oxidation state of the transition metals in Mn-rich NMC.

15.
Environ Sci Technol ; 52(17): 10186-10195, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30078331

RESUMEN

A commonly overlooked and largely unknown aspect of assessing the environmental and biological safety of engineered nanomaterials is their transformation in aqueous systems. Complex metal oxides are an important class of materials for catalysis, energy storage, and water purification. However, the potential impact of nano complex metal oxides on the environment upon improper disposal is not well understood. We present a comprehensive analysis of the interaction of an environmentally relevant oxyanion, phosphate, with a complex metal oxide nanomaterial, lithium cobalt oxide. Our results show that adsorption of phosphate to the surface of these materials drastically impacts their surface charge, rendering them more stable in aqueous systems. The adsorbed phosphate remains on the surface over significant periods of time, suggesting that desorption is not kinetically favored. The implications of this interaction may be increased dispersibility and bioavailability of these materials in environmental water systems.


Asunto(s)
Nanopartículas , Fosfatos , Adsorción , Cobalto , Óxidos
16.
Environ Sci Technol ; 52(10): 5792-5802, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29653050

RESUMEN

The rapid increase in use of Li-ion batteries in portable electronics has created a pressing need to understand the environmental impact and long-term fate of electonic waste (e-waste) products such as heavy and/or reactive metals. The type of e-waste that we focus on here are the complex metal oxide nanomaterials that compose Li-ion battery cathodes. While in operation the complex metal oxides are in a hermetically sealed container. However, at the end of life, improper disposal can cause structural transformations such as dissolution and metal leaching, resulting in a significant exposure risk to the surrounding environment. The transformations that occur between operational to environmental settings gives rise to a stark knowledge gap between macroscopic design and molecular-level behavior. In this study we use theory and modeling to describe and explain previously published experimental data for cation release from Li(Ni1/3Mn1/3Co1/3)O2 (NMC) nanoparticles in an aqueous environment ( Chem. Mater. 2016 (28) 1092-1100). To better understand the transformations that may occur when this material is exposed to the environment, we compute the free energy of surface dissolution, Δ G, from the complex metal oxide NMC for a range of surface terminations and pH.


Asunto(s)
Metales , Óxidos , Cationes , Solubilidad , Termodinámica
17.
Phys Chem Chem Phys ; 20(5): 3349-3362, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29226924

RESUMEN

We describe a strategy of integrating quantum mechanical (QM), hybrid quantum mechanical/molecular mechanical (QM/MM) and MM simulations to analyze the physical properties of a solid/water interface. This protocol involves using a correlated ab initio (CCSD(T)) method to first calibrate Density Functional Theory (DFT) as the QM approach, which is then used in QM/MM simulations to compute relevant free energy quantities at the solid/water interface using a mean-field approximation of Yang et al. that decouples QM and MM thermal fluctuations; gas-phase QM/MM and periodic DFT calculations are used to determine the proper QM size in the QM/MM simulations. Finally, the QM/MM free energy results are compared with those obtained from MM simulations to directly calibrate the force field model for the solid/water interface. This protocol is illustrated by examining the orientations of an alkyl amine ligand at the gold/water interface, since the ligand conformation is expected to impact the chemical properties (e.g., charge) of the solid surface. DFT/MM and MM simulations using the INTERFACE force field lead to consistent results, suggesting that the effective gold/ligand interactions can be adequately described by a van der Waals model, while electrostatic and induction effects are largely quenched by solvation. The observed differences among periodic DFT, QM/MM and MM simulations, nevertheless, suggest that explicitly including electronic polarization and potentially charge transfer in the MM model can be important to the quantitative accuracy. The strategy of integrating multiple computational methods to cross-validate each other for complex interfaces is applicable to many problems that involve both inorganic/metallic and organic/biomolecular components, such as functionalized nanoparticles.

18.
Inorg Chem ; 56(21): 13014-13028, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29048881

RESUMEN

The interactions between aqueous aluminum (Al) nanoclusters and ions in solution influence the reactivity of nanomaterials in natural waters and are crucial to the targeted syntheses of aluminum oxides. To contribute to the fundamental understanding of how both anion and Al-nanocluster properties affect the interactions, we carry out systematic modeling studies that employ density functional theory calculations embedded in a continuum solvent model. Energetic and electronic structure analysis is applied toward delineating the interactions of a range of probe adsorbate anions with Al nanoclusters to elucidate how small molecules may react with naturally occurring nanomaterials. The study spans seven small molecules on three model Al nanoclusters. Using this ion set, we correlate the size, shape, and formal charge of the adsorbate to the trends in adsorption energies. A key finding is that the collective effects of exposed oxygen functional groups, i.e., the distribution of functional groups, dictates the electrostatic potential of the nanocluster surface, which, in turn, controls trends in anion adsorption. The computed adsorption and deprotonation trends are correlated to known synthetic routes of Al-nanocluster formation and subsequent crystallization to give insight into the potential optimization of synthetic conditions.

19.
Inorg Chem ; 54(17): 8367-74, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26252808

RESUMEN

Keggin-type aluminum oxyhydroxide species such as the Al30 (Al30O8(OH)56(H2O)26(18+)) polycation can readily sequester inorganic and organic forms of P(V) and As(V), but there is a limited chemical understanding of the adsorption process. Herein, we present experimental and theoretical structural and chemical characterization of [(TBP)2Al2(µ4-O8)(Al28(µ2-OH)56(H2O)22)](14+) (TBP = t-butylphosphonate), denoted as (TBP)2Al30-S. We go on to consider the structure as a model for studying the reactivity of oxyanions to aluminum hydroxide surfaces. Density functional theory (DFT) calculations comparing the experimental structure to model configurations with P(V) adsorption at varying sites support preferential binding of phosphate in the Al30 beltway region. Furthermore, DFT calculations of R-substituted phosphates and their arsenate analogues consistently predict the beltway region of Al30 to be most reactive. The experimental structure and calculations suggest a shape-reactivity relationship in Al30, which counters predictions based on oxygen functional group identity.

20.
Dalton Trans ; 53(7): 3397-3406, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38265201

RESUMEN

The actinyl tetrachloro complex [An(V/VI)O2Cl4]2-/3- tends to form discrete molecular units in both solution and solid state materials, but related aquachloro complexes have been observed as both discrete coordination compounds and 1-D chain topologies. Subtle differences in the inner sphere coordination significantly influence the formation of structural topologies in the actinyl chloride system, but the exact reasoning for these variations has not been delineated. In the current study, we present the synthesis, structural characterization, and vibrational analysis of two 1-D neptunyl(V) chain compounds: (CH6N3)2[NpO2Cl3] (Np-Gua) and Rb[NpO2Cl2(H2O)] (Np-Rb). Bonding and non-covalent interactions (NCIs) in the systems were evaluated using periodic Density Functional Theory (DFT) to link these properties to related phases. We observed ∼6.5% and ∼3.9% weakening of NpO bonds in Np-Gua and Np-Rb compared to the reference Cs3[NpO2Cl4]. NCI analysis distinguished specific assembly modes, where Np-Gua was connected via hydrogen bonding (N-H⋯Cleq and N-H⋯Oyl) and Np-Rb contained both cation interactions (Rb+⋯Oyl and Rb+⋯Cleq) and hydrogen bonding (Oeq-H⋯Oyl) networks. Thermodynamically viable formation pathways for both compounds were explored using DFT methodology. The [NpO2Cl4](aq)3- and [NpO2Cl3(H2O)](aq)2- substructures were identified as precursors to Np-Gua and [NpO2Cl3(H2O)](aq)2- and [NpO2Cl2(H2O)2](aq)- were isolated as the primary building units of Np-Rb. Finally, we utilized DFT to analyze the vibrational modes for Np-Gua and Np-Rb, where we found evidence of the NpO bond weakening within the Np(V) chain structures compared to [NpO2Cl4]3-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA