Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 20(1): 149, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936173

RESUMEN

Effective communication is especially important in the wearable robots (WRs) community, which encloses a great variety of devices across different application domains, e.g., healthcare, occupational, and consumer. In this paper we present a vocabulary of terms with the aim to create a common understanding of terms and concepts among the different fields of expertise relevant in the WRs community. Our goal is to develop shared documentation that could serve as a reference to facilitate the use of accepted definitions in the field. The presented vocabulary is the result of different focus group discussions among experts in the field. The resulting document was then validated by presenting it to the WR community through an online survey. The results of the survey highlight a strong agreement in terms of acceptance of the vocabulary, its usefulness, and applicability of the proposed definitions as well as an overall appreciation for its purpose and target. This work represents a pilot study providing unique material for the WR community, encouraging the use of shared agreed definitions. The reported version of the vocabulary has been made available as a live document in a github repository, for public commenting and further improvements.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Proyectos Piloto , Grupos Focales , Encuestas y Cuestionarios
2.
J Neuroeng Rehabil ; 20(1): 68, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259115

RESUMEN

Exoskeletons are becoming the reference technology for assistance and augmentation of human motor functions in a wide range of application domains. Unfortunately, the exponential growth of this sector has not been accompanied by a rigorous risk assessment (RA) process, which is necessary to identify the major aspects concerning the safety and impact of this new technology on humans. This situation may seriously hamper the market uptake of new products. This paper presents the results of a survey that was circulated to understand how hazards are considered by exoskeleton users, from research and industry perspectives. Our analysis aimed to identify the perceived occurrence and the impact of a sample of generic hazards, as well as to collect suggestions and general opinions from the respondents that can serve as a reference for more targeted RA. Our results identified a list of relevant hazards for exoskeletons. Among them, misalignments and unintended device motion were perceived as key aspects for exoskeletons' safety. This survey aims to represent a first attempt in recording overall feedback from the community and contribute to future RAs and the identification of better mitigation strategies in the field.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Humanos , Encuestas y Cuestionarios
3.
Sensors (Basel) ; 22(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684614

RESUMEN

Exoskeletons and exosuits have witnessed unprecedented growth in recent years, especially in the medical and industrial sectors. In order to be successfully integrated into the current society, these devices must comply with several commercialization rules and safety standards. Due to their intrinsic coupling with human limbs, one of the main challenges is to test and prove the quality of physical interaction with humans. However, the study of physical human-exoskeleton interactions (pHEI) has been poorly addressed in the literature. Understanding and identifying the technological ways to assess pHEI is necessary for the future acceptance and large-scale use of these devices. The harmonization of these evaluation processes represents a key factor in building a still missing accepted framework to inform human-device contact safety. In this review, we identify, analyze, and discuss the metrics, testing procedures, and measurement devices used to assess pHEI in the last ten years. Furthermore, we discuss the role of pHEI in safety contact evaluation. We found a very heterogeneous panorama in terms of sensors and testing methods, which are still far from considering realistic conditions and use-cases. We identified the main gaps and drawbacks of current approaches, pointing towards a number of promising research directions. This review aspires to help the wearable robotics community find agreements on interaction quality and safety assessment testing procedures.


Asunto(s)
Dispositivo Exoesqueleto , Robótica , Diseño de Equipo , Humanos , Robótica/métodos
4.
Bioinspir Biomim ; 18(3)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37068491

RESUMEN

Evaluating human-exoskeleton interaction typically requires experiments with human subjects, which raises safety issues and entails time-consuming testing procedures. This paper presents a mechatronic replica of a human leg, which was designed to quantify physical interaction dynamics between exoskeletons and human limbs without the need for human testing. In the first part of this work, we present the mechanical, electronic, sensory system and software solutions integrated in our leg replica prototype. In the second part, we used the leg replica to test its interaction with two types of commercially available wearable devices, i.e. an active full leg exoskeleton and a passive knee orthosis. We ran basic test examples to demonstrate the functioning and benchmarking potential of the leg replica to assess the effects of joint misalignments on force transmission. The integrated force sensors embedded in the leg replica detected higher interaction forces in the misaligned scenario in comparison to the aligned one, in both active and passive modalities. The small standard deviation of force measurements across cycles demonstrates the potential of the leg replica as a standard test method for reproducible studies of human-exoskeleton physical interaction.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Pierna , Benchmarking , Programas Informáticos , Fenómenos Biomecánicos
5.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941226

RESUMEN

The objective and quantitative assessment of physical human-exoskeletons interaction (pHEI) represents a pressing necessity in the wearable robots field. This process remains of difficult execution, especially for early stage devices, in which the inclusion of human testing could pose ethical and safety concerns. This manuscript proposes a methodology for pHEI assessment based on an active dummy leg named Leg Replica, which is able to sense interaction forces while wearing an exoskeleton. We tested this methodology on a wearable active knee exoskeleton prototype, with the goal to evaluate the effects of a misalignment compensation mechanism. Through this methodology, it was possible to show how the misalignment compensation mechanism was able to reduce the interaction forces during passive exoskeleton motion. Such reduction was less evident when the exoskeleton was active. The tests allowed to identify specific points of improvements for the exoskeleton, enabling a more specific upgrade of the device based on these experimental results. This study demonstrates the ability of the proposed methodology to objectively benchmark different aspects of pHEI, and to accelerate the iterative development of new devices prior to human testing.


Asunto(s)
Dispositivo Exoesqueleto , Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Pierna , Rodilla
6.
Wearable Technol ; 4: e2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487768

RESUMEN

Cumulative back muscle fatigue plays a role in the occurrence of low-back injuries in occupations that require repetitive lifting of heavy loads and working in forward leaning postures. Lift-support exoskeletons have the potential to reduce back and hip muscle activity, thereby delaying the onset of fatigue in these muscles. Therefore, exoskeletons are being considered a potentially important tool to further reduce workload-related injuries. However, today no standards have been established on how to benchmark the support level of lift-support exoskeletons. This work proposes an experimental protocol to quantify the support level of a lift-support exoskeletons on instant changes in muscle activity and fatigue development while maintaining a static forward leaning posture. It then applies the protocol to experimentally assess the effect of the support provided by a commercially available lift-support exoskeleton, the LiftSuit 2.0 (Auxivo AG, Schwerzenbach, Switzerland), on the user. In a sample of 14 participants, the amplitude of the muscle activity of the back muscles and hip muscles () was significantly reduced. Wearing the exoskeleton significantly reduced the amount of fatigue developed during the task (). Changes in muscle fatigue can be objectively recorded and correlated with relevant changes for exoskeleton users: the time a task can be performed and perceived low-back fatigue. Thus, including such measures of fatigue in standardized benchmarking procedures will help quantify the benefits of exoskeletons for occupational use.

7.
Bioinspir Biomim ; 17(6)2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36113448

RESUMEN

Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedures that will boost not only the scientific development of better bioinspired solutions, but also their market uptake.


Asunto(s)
Robótica , Marcha , Humanos , Locomoción , Robótica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA