RESUMEN
Particulate Matter (PM) is a complex and heterogeneous mixture of atmospheric particles recognized as a threat to human health. Oxidative Potential (OP) measurement is a promising and integrative method for estimating PM-induced health impacts since it is recognized as more closely associated with adverse health effects than ordinarily used PM mass concentrations. OP measurements could be introduced in the air quality monitoring, along with the parameters currently evaluated. PM deposition in the lungs induces oxidative stress, inflammation, and DNA damage. The study aimed to compare the OP measurements with toxicological effects on BEAS-2B and THP-1 cells of winter and summer PM1 collected in the Po Valley (Italy) during 2021. PM1 was extracted in deionized water by mechanical agitation and tested for OP and, in parallel, used to treat cells. Cytotoxicity, genotoxicity, oxidative stress, and inflammatory responses were assessed by MTT test, DCFH-DA assay, micronucleus, γ-H2AX, comet assay modified with endonucleases, ELISA, and Real-Time PCR. The evaluation of OP was performed by applying three different assays: dithiothreitol (OPDTT), ascorbic acid (OPAA), and 2',7'-dichlorofluorescein (OPDCFH), in addition, the reducing potential was also analysed (RPDPPH). Seasonal differences were detected in all the parameters investigated. The amount of DNA damage detected with the Comet assay and ROS formation highlights the presence of oxidative damage both in winter and in summer samples, while DNA damage (micronucleus) and genes regulation were mainly detected in winter samples. A positive correlation with OPDCFH (Spearman's analysis, p < 0.05) was detected for IL-8 secretion and γ-H2AX. These results provide a biological support to the implementation in air quality monitoring of OP measurements as a useful proxy to estimate PM-induced cellular toxicological responses. In addition, these results provide new insights for the assessment of the ability of secondary aerosol in the background atmosphere to induce oxidative stress and health effects.
Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Daño del ADN , Oxidación-Reducción , Estrés Oxidativo , Material Particulado , Estaciones del Año , Material Particulado/toxicidad , Humanos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Daño del ADN/efectos de los fármacos , Italia , Monitoreo del Ambiente/métodos , Células THP-1 , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacosRESUMEN
We present a dynamic implementation of the beam-tracking x-ray imaging method providing absorption, phase, and ultrasmall angle scattering signals with microscopic resolution and high frame rate. We demonstrate the method's ability to capture dynamic processes with 22-ms time resolution by investigating the melting of metals in laser additive manufacturing, which has so far been limited to single-modality synchrotron radiography. The simultaneous availability of three contrast channels enables earlier segmentation of droplets, tracking of powder dynamic, and estimation of unfused powder amounts, demonstrating that the method can provide additional information on melting processes.
RESUMEN
Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg-1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.
Asunto(s)
Abejas/química , Monitoreo Biológico/métodos , Mercurio/análisis , Espectrometría de Fluorescencia/métodos , Animales , Frío , Cucumis melo/química , Exactitud de los Datos , Contaminación Ambiental/análisis , Ácidos Grasos/análisis , Miel/análisis , Italia , Polen/química , Própolis/análisis , Espectrofotometría Atómica/métodos , Ceras/análisisRESUMEN
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons. Pre-clinical studies drive the development of animal models that well mimic ALS disorder and enable both the dissection of disease processes and an early assessment of therapy efficacy. A comprehensive knowledge of neuronal and vascular lesions in the brain and spinal cord is an essential factor to understand the development of the disease. Spatial resolution and bidimensional imaging are important drawbacks limiting current neuroimaging tools, while neuropathology relies on protocols that may alter tissue chemistry and structure. In contrast, recent exâ vivo studies in mice demonstrated that X-ray phase-contrast tomography enables study of the 3D distribution of both vasculature and neuronal networks, without sample sectioning or use of staining. Here we present our findings on exâ vivo SOD1G93A ALS mice spinal cord at a micrometric scale. An unprecedented direct quantification of neuro-vascular alterations at different stages of the disease is shown.
Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Animales , Modelos Animales de Enfermedad , Imagenología Tridimensional , Ratones , Ratones Transgénicos , Sensibilidad y Especificidad , Relación Señal-RuidoRESUMEN
Recent trends in hard X-ray micro-computed tomography (microCT) aim at increasing both spatial and temporal resolutions. These challenges require intense photon beams. Filtered synchrotron radiation beams, also referred to as `pink beams', which are emitted by wigglers or bending magnets, meet this need, owing to their broad energy range. In this work, the new microCT station installed at the biomedical beamline ID17 of the European Synchrotron is described and an overview of the preliminary results obtained for different biomedical-imaging applications is given. This new instrument expands the capabilities of the beamline towards sub-micrometre voxel size scale and simultaneous multi-resolution imaging. The current setup allows the acquisition of tomographic datasets more than one order of magnitude faster than with a monochromatic beam configuration.
Asunto(s)
Microtomografía por Rayos X/instrumentación , Animales , Diseño de Equipo , Europa (Continente) , Humanos , Imagenología Tridimensional , Técnicas In Vitro , Pulmón/diagnóstico por imagen , Ratones , Fantasmas de Imagen , Médula Espinal/diagnóstico por imagen , SincrotronesRESUMEN
X-ray phase contrast imaging is gaining importance as an imaging tool. However, it is common for X-ray phase detection techniques to be sensitive to the derivatives of the phase. Therefore, the integration of differential phase images is a fundamental step both to access quantitative pixel content and for further analysis such as segmentation. The integration of noisy data leads to artefacts with a severe impact on image quality and on its quantitative content. In this work, an integration method based on the Wiener filter is presented and tested using simulated and real data obtained with the edge illumination differential X-ray phase imaging method. The method is shown to provide high image quality while preserving the quantitative pixel content of the integrated image. In addition, it requires a short computational time making it suitable for large datasets.
RESUMEN
Air pollution is recognized as the world's largest environmental health risk. In this work we evaluated in vivo the effects of three relevant components of atmospheric dusts (brake dust, wood pellet ash and Saharan dust) employing the animal model Caenorhabditis elegans. Main endpoints of C. elegans such as life span, brood size and oxidative stress were addressed by exposing the nematodes to different dust concentrations. Brake dust and pellet ash affected the life span and increased significantly the oxidative stress of exposed nematodes, while Saharan dust showed no effects. Water soluble and insoluble fractions of these dusts were used to investigate the impact of the single fraction on C. elegans. The two fractions of brake dust and pellet ash exerted different effects on C. elegans endpoints in terms of life span and oxidative stress response. These fractions acted in different ways on the worm susceptibility to infection of two human pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) affecting the sek-1 gene expression. In conclusion, our study showed that C. elegans is a valuable tool to investigate in vivo possible effects of atmospheric dusts.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , África del Norte , Contaminantes Atmosféricos/toxicidad , Animales , Caenorhabditis elegans , Polvo , HumanosRESUMEN
Bee health and beehive products' quality are compromised by complex interactions between multiple stressors, among which toxic elements play an important role. The aim of this study is to optimize and validate sensible and reliable analytical methods for biomonitoring studies and the quality control of beehive products. Four digestion procedures, including two systems (microwave oven and water bath) and different mixture reagents, were evaluated for the determination of the total content of 40 elements in bees and five beehive products (beeswax, honey, pollen, propolis and royal jelly) by using inductively coupled plasma mass and optical emission spectrometry. Method validation was performed by measuring a standard reference material and the recoveries for each selected matrix. The water bath-assisted digestion of bees and beehive products is proposed as a fast alternative to microwave-assisted digestion for all elements in biomonitoring studies. The present study highlights the possible drawbacks that may be encountered during the elemental analysis of these biological matrices and aims to be a valuable aid for the analytical chemist. Total elemental concentrations, determined in commercially available beehive products, are presented.
Asunto(s)
Metales/análisis , Oligoelementos/análisis , Animales , Abejas , Ácidos Grasos/química , Miel , Espectrometría de Masas , Microondas , Polen/química , Própolis/química , Espectrometría de Fluorescencia , Temperatura , Ceras/químicaRESUMEN
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder associated with aberrant production of beta-amyloid (Aß) peptide depositing in brain as amyloid plaques. While animal models allow investigation of disease progression and therapeutic efficacy, technology to fully dissect the pathological mechanisms of this complex disease at cellular and vascular levels is lacking. X-ray phase contrast tomography (XPCT) is an advanced non-destructive 3D multi-scale direct imaging from the cell through to the whole brain, with exceptional spatial and contrast resolution. We exploit XPCT to simultaneously analyse disease-relevant vascular and neuronal networks in AD mouse brain, without sectioning and staining. The findings clearly show the different typologies and internal structures of Aß plaques, together with their interaction with patho/physiological cellular and neuro-vascular microenvironment. XPCT enables for the first time a detailed visualization of amyloid-angiopathy at capillary level, which is impossible to achieve with other approaches. XPCT emerges as added-value technology to explore AD mouse brain as a whole, preserving tissue chemistry and structure, enabling the comparison of physiological vs. pathological states at the level of crucial disease targets. In-vivo translation will permit to monitor emerging therapeutic approaches and possibly shed new light on pathological mechanisms of neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Imagenología Tridimensional/métodos , Neuroimagen/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones TransgénicosRESUMEN
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
RESUMEN
Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.
RESUMEN
Peat is the main constituent of cultivation substrates and a precious non-renewable fossil material. Peatlands provide important ecosystem services and allow the absorption and storage of carbon. Protecting peatlands helps tackle climate change and contributes to biodiversity conservation. Due to its importance, it is necessary to implement strategies to reduce the use of peat, such as replacing it with biomass-based alternative growing media constituents, such as Sphagnum moss. In this study, we compared the metal release and binding properties at two different pH, antioxidant activity, and total phenolic content of peat and Sphagnum moss from the Tierra del Fuego (TdF) region of southern Patagonia. Levels of the elements were determined by inductively coupled plasma mass spectrometry (ICP-MS), while the types and amounts of functional groups were characterized and compared using Fourier transform infrared (FTIR) spectroscopy. The total phenol level and antioxidant capacity were assessed using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl test. There are generally higher concentrations of leachable elements in peat than in Sphagnum moss at pH = 2, except Cs, Rb, Ti, and Zr. In contrast, at pH = 5, levels of all leached elements are highest in Sphagnum moss. Sphagnum moss shows a higher metal adsorption capacity than peat, except for Be, Mn, Tl, and Zn. Finally, the results showed that both matrices contained similar total phenolic contents: 0.018 ± 0.011 mg gallic acid equivalent (GAE) per gram dry sample for peat and 0.020 ± 0.007 mg GAE g-1 for Sphagnum moss. Instead, Sphagnum moss extracts showed a significantly higher antioxidant activity [0.026 ± 0.028 mmol Trolox equivalents (TE) g-1] than that estimated in peat (0.009 ± 0.005 mmol TE g-1). Humic acids, carboxylic acids, and phenolic and lignin groups were identified as the functional groups that mainly determined the antioxidant activity of the Sphagnum moss compared to peat. The present study resulted in an advancement of knowledge of these materials for more thoughtful future use and possible replacements.
Asunto(s)
Antioxidantes , Suelo , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/metabolismo , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/metabolismo , Suelo/química , Metales/análisis , Metales/química , Metales/metabolismo , Fenoles/análisis , Fenoles/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
BACKGROUND: The thymus, responsible for T cell-mediated adaptive immune system, has a structural and functional complexity that is not yet fully understood. Until now, thymic anatomy has been studied using histological thin sections or confocal microscopy 3D reconstruction, necessarily for limited volumes. METHODS: We used Phase Contrast X-Ray Computed Tomography to address the lack of whole-organ volumetric information on the microarchitecture of its structural components. We scanned 15 human thymi (9 foetal and 6 postnatal) with synchrotron radiation, and repeated scans using a conventional laboratory x-ray system. We used histology, immunofluorescence and flow cytometry to validate the x-ray findings. RESULTS: Application to human thymi at pre- and post-natal stages allowed reliable tracking and quantification of the evolution of parameters such as size and distribution of Hassall's Bodies and medulla-to-cortex ratio, whose changes reflect adaptation of thymic activity. We show that Hassall's bodies can occupy 25% of the medulla volume, indicating they should be considered a third thymic compartment with possible implications on their role. Moreover, we demonstrate compatible results can be obtained with standard laboratory-based x-ray equipment, making this research tool accessible to a wider community. CONCLUSIONS: Our study allows overcoming the resolution and/or volumetric limitations of existing approaches for the study of thymic disfunction in congenital and acquired disorders affecting the adaptive immune system.
The thymus is the organ responsible for programming the immune system. It consists of two main compartments, named medulla and cortex. The medulla contains onion-shaped parts known as "Hassall's bodies". By imaging thymi at different stages of development with advanced x-ray methods, we gain understanding of changes that occur over time in 3D. We quantified how much of the thymus was occupied by these different components as they change with age, showing that Hassall's bodies can take up 25% of the medulla, and should therefore be considered a proper part of the thymus with a purpose. Having a better understanding of the thymus can prove important in targeting conditions such as Down syndrome and thymic tumours, as well as provide information about structure.
RESUMEN
This study aims to propose an innovative, simple, rapid, and cost-effective method to study oxidative stress induced by PM through in-vivo exposure of the plant model organism Arabidopsis thaliana. A. thaliana seedlings were exposed to urban dust certified for its elemental content and to PM2.5 samples collected in an urban-industrial area of Northern Italy. An innovative technique for the detachment and suspension in water of the whole intact dust from membrane filters was applied to expose the model organism to both the soluble and insoluble fractions of PM2.5, which were analyzed for 34 elements by ICP-MS. Oxidative stress induced by PM on A. thaliana was assessed by light microscopic localization and UV-Vis spectrophotometric determination of superoxide anion (O2-) content on the exposed seedlings by using the nitro blue tetrazole (NBT) assay. The results showed a good efficiency and sensitivity of the method for PM mass concentrations >20 µg m-3 and an increase in O2- content in all exposed seedlings, which mainly depends on the concentration, chemical composition, and sources of the PM administered to the model organism. Particles released by biomass burning appeared to contribute more to the overall toxicity of PM. This method was found to be cost-effective and easy to apply to PM collected on membrane filters in intensive monitoring campaigns in order to obtain valuable information on the ability of PM to generate oxidative stress in living organisms.
Asunto(s)
Contaminantes Atmosféricos , Arabidopsis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Estrés Oxidativo , Polvo , Plantones , Monitoreo del Ambiente/métodos , Tamaño de la PartículaRESUMEN
Objective.Attenuation masks can be used in x-ray imaging systems to increase their inherent spatial resolution and/or make them sensitive to phase effects, a typical example being Edge Illumination x-ray phase contrast imaging (EI-XPCI). This work investigates the performance of a mask-based system such as EI-XPCI in terms of Modulation Transfer Function (MTF), in the absence of phase effects.Approach. Pre-sampled MTF measurements, using an edge, were performed on the same system implemented without masks, with non-skipped masks and finally with skipped masks (i.e. masks in which apertures illuminate every other pixel row/column). Results are compared to simulations and finally images of a resolution bar pattern acquired with all the above setups are presented.Main results. Compared to the detector's inherent MTF, the non-skipped mask setup provides improved MTF results. In comparison to an ideal case where signal spill-out into neighbouring pixels is negligible, this improvement takes place only at specific frequencies of the MTF, dictated by the spatial repetition of the spill-out signal. This is limited with skipped masks, which indeed provide further MTF improvements over a larger frequency range. Experimental MTF measurements are supported through simulation and resolution bar pattern images.Significance. This work has quantified the improvement in MTF due to the use of attenuation masks and lays the foundation for how acceptance and routine quality control tests will have to be modified when systems using masks are introduced in clinical practice and how MTF results will compare to those of conventional imaging systems.
Asunto(s)
Intensificación de Imagen Radiográfica , Interpretación de Imagen Radiográfica Asistida por Computador , Rayos X , Intensificación de Imagen Radiográfica/métodos , Simulación por Computador , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Control de Calidad , Fantasmas de ImagenRESUMEN
We demonstrate the capability of laboratory-based x-ray microscopes, using intensity-modulation masks, to access the sub-micron length scale in the dark field contrast channel while maintaining micron resolution in the resolved (refraction and attenuation) channels. The dark field contrast channel reveals the presence of ensembles of samples' features below the system resolution. Resolved refraction and attenuation channels provide multi-modal high-resolution imaging down to the micron scale. We investigate the regimes of modulated and un-modulated dark field as well as refraction, quantifying their dependence on the relationship between feature size in the imaged object and aperture size in the intensity-modulation mask. We propose an analytical model to link the measured signal with the sample's microscopic properties. Finally, we demonstrate the relevance of the microscopic dark field contrast channel in applications from both the life and physical sciences, providing proof of concept results for imaging collagen bundles in cartilage and dendritic growth in lithium batteries.
RESUMEN
Peatlands in southern South America (Tierra del Fuego region, TdF) play a key role in the ecological dynamics of Patagonia. It is, therefore, necessary to increase our knowledge and awareness of their scientific and ecological value to ensure their conservation. This study aimed to assess the differences in the distribution and accumulation of elements in peat deposits and Sphagnum moss from the TdF. Chemical and morphological characterization of the samples was carried out using various analytical techniques, and total levels of 53 elements were determined. Furthermore, a chemometric differentiation based on the elemental content of peat and moss samples was performed. Some elements (Cs, Hf, K, Li, Mn, Na, Pb, Rb, Si, Sn, Ti and Zn) showed significantly higher contents in moss samples than in peat samples. In contrast, only Mo, S and Zr were significantly higher in peat samples than in moss samples. The results obtained highlight the ability of moss to accumulate elements and to act as a means to facilitate the entry of elements into peat samples. The valuable data obtained in this multi-methodological baseline survey can be used for more effective conservation of biodiversity and preservation of the ecosystem services of the TdF.
Asunto(s)
Briófitas , Sphagnopsida , Ecosistema , Secuestro de Carbono , Monitoreo del Ambiente/métodos , Sphagnopsida/química , Suelo , CarbonoRESUMEN
Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure. Non-linearities observed in PM[Formula: see text]-CR curves are interpreted as a result of the interplay between the aerosol total oxidative potential (OP[Formula: see text]) and its distribution across particle size (d[Formula: see text]). A d[Formula: see text]-dependent condensation sink (CS) is assessed together with the distribution with d[Formula: see text] of reactive species . Urban ambient aerosol high in OP[Formula: see text], as indicated by the DTT assay, with (possibly copper-containing) nanoparticles, shows higher pro-inflammatory and oxidative responses, this occurring at lower PM[Formula: see text] concentrations (< 5 [Formula: see text]g m[Formula: see text]). Among the implications of this work, there are recommendations for global efforts to go toward the refinement of actual air quality standards with metrics considering the distribution of OP[Formula: see text] with d[Formula: see text] also at relatively low PM[Formula: see text].
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Material Particulado/análisis , Tamaño de la Partícula , Estrés Oxidativo , Aerosoles , Inflamación/inducido químicamente , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisisRESUMEN
Exposure to potentially toxic trace elements (PTTEs) in inhalable particulate matter (PM10) is associated with an increased risk of developing cardiorespiratory diseases. Therefore, in multi-source polluted urban contexts, a spatially-resolved evaluation of health risks associated with exposure to PTTEs in PM is essential to identify critical risk areas. In this study, a very-low volume device for high spatial resolution sampling and analysis of PM10 was employed in Terni (Central Italy) in a wide and dense network (23 sampling sites, about 1 km between each other) during a 15-month monitoring campaign. The soluble and insoluble fraction of 33 elements in PM10 was analysed through a chemical fractionation procedure that increased the selectivity of the elements as source tracers. Total carcinogenic risk (CR) and non-carcinogenic risk (NCR) for adults and children due to concentrations of PTTEs in PM10 were calculated and quantitative source-specific risk apportionment was carried out by applying Positive Matrix Factorization (PMF) to the spatially-resolved concentrations of the chemically fractionated elements. PMF analysis identified 5 factors: steel plant, biomass burning, brake dust, soil dust and road dust. Steel plant showed the greatest risk contribution. Total CR and NCR, and source-specific risk contributions at the 23 sites were interpolated using the ordinary kriging (OK) method and mapped to geo-reference the health risks of the identified sources in the whole study area. This also allowed risk estimation in areas not directly measured and the assessment of the risk contribution of individual sources at each point of the study area. This innovative experimental approach is an effective tool to localize the health risks of spatially disaggregated sources of PTTEs and it may allow for better planning of control strategies and mitigation measures to reduce airborne pollutant concentrations in urban settings polluted by multiple sources.
Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Adulto , Contaminantes Atmosféricos/análisis , Carcinógenos/análisis , Niño , Ciudades , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/análisis , Suelo , Acero/análisis , Oligoelementos/análisisRESUMEN
In this study, we determined the levels of elements (i.e. As, Be, Cd, Cr, Hg, Ni, Pb, U, and Zn) in bees and edible beehive products (honey, wax, pollen, and propolis) sampled from five selected sites in the Rome province (Italy). RATIONALE: to increase the information variety endowment, the monitoring breakdown structure (MBS) conceptual model was used (nine elements, 429 samples, and approximately thirteen thousand determinations over a 1-year survey). Thus, we employed Johnson's probabilistic method to build the control charts. Then, we measured the element concentration overlap ranges and the overlap bioaccumulation index (OBI). Subsequently, we evaluated the estimated daily intake (EDI) of the analysed elements and matched them with acceptable reference doses. The human health risk caused by the intake of individual elements found in edible beehive products and their risk summation were evaluated through the target hazard quotient (THQ) and hazard index (HI) methods. FINDINGS: excluding honey, this study confirms the capacity of wax, pollen, propolis, and bees to accumulate high levels of toxic and potentially toxic elements from the surrounding environment (with high OBI-U, i.e. OBI-Upper values, i.e. the common upper concentration limit of the overlap concentration range). Bees and pollen showed a high bioaccumulation Cd surplus (OBI-U = 44.0 and 22.3, respectively). On the contrary, honey had high OBI-L values (i.e. honey concentrates metals several times less than the common lower concentration limit of the overlap concentration range). This finding implies that honey is useless as an environmental indicator compared with the other biomonitor/indicators. The EDI values for the edible beehive products were lower than the health and safety reference doses for all the considered elements. Our data show that honey, wax, propolis, and pollen are safe for consumption by both adults and children (THQ < 1; HI < 1), even considering the sporadic possibility of consuming them simultaneously. ORIGINALITY: This study has been conducted for the first time in the Rome province and demonstrates that edible indicators are safe for consumption for the considered elements in bees and edible beehive products. Depending on the ecosystem/pollutants studied, the OBI consents to make a correct choice for environmental biomonitoring studies and to focus the attention on the most sensitive biomonitors/indicators when required at the project level.