Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 132: 185-192, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34776333

RESUMEN

The covalent attachment of ubiquitin and ubiquitin-like polypeptides to cellular and viral proteins regulates numerous processes that enable virus infection, viral genome replication, and the spread of viruses to new hosts. The importance of these protein modifications in the regulation of the life cycle of herpesviruses is underscored by the discovery that all known members of this virus family encode at least one protease that specifically recognizes and disassembles ubiquitin conjugates. The structural and functional characterization of the viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infection and increasing evidence suggests that the viral deconjugases may also play a role in malignant transformation.


Asunto(s)
Herpesviridae , Virosis , Humanos , Ubiquitina/metabolismo , Replicación Viral , Proteínas Virales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
PLoS Pathog ; 17(9): e1009954, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543352

RESUMEN

Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células HEK293 , Células HeLa , Humanos
3.
Biochem J ; 478(12): 2297-2308, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34143865

RESUMEN

Autophagy is an important component of the innate immune response that restricts infection by different types of pathogens. Viruses have developed multiple strategies to avoid autophagy to complete their replication cycle and promote spreading to new hosts. Here, we report that the ubiquitin deconjugases encoded in the N-terminal domain of the large tegument proteins of Epstein-Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV), but not herpes simplex virus-1 (HSV-1), regulate selective autophagy by inhibiting the activity of the autophagy receptor SQSTM1/p62. We found that all the homologs bind to and deubiquitinate SQSTM1/p62 but with variable efficiency, which correlates with their capacity to prevent the colocalization of light chain 3 (LC3) with SQSTM1/p62 aggregates and promote the accumulation of a model autophagy substrate. The findings highlight important differences in the strategies by which herpesviruses interfere with selective autophagy.


Asunto(s)
Autofagia , Enzimas Desubicuitinizantes/metabolismo , Infecciones por Herpesviridae/virología , Herpesviridae/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Sequestosoma-1/metabolismo , Proteínas Virales/metabolismo , Enzimas Desubicuitinizantes/genética , Células HeLa , Herpesviridae/clasificación , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/patología , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteína Sequestosoma-1/genética , Ubiquitina/metabolismo , Ubiquitinación , Proteínas Virales/genética , Replicación Viral
4.
PLoS Pathog ; 15(11): e1008146, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710640

RESUMEN

The 14-3-3 molecular scaffolds promote type I interferon (IFN) responses by stabilizing the interaction of RIG-I with the TRIM25 ligase. Viruses have evolved unique strategies to halt this cellular response to support their replication and spread. Here, we report that the ubiquitin deconjugase (DUB) encoded in the N-terminus of the Epstein-Barr virus (EBV) large tegument protein BPLF1 harnesses 14-3-3 molecules to promote TRIM25 autoubiquitination and sequestration of the ligase into inactive protein aggregates. Catalytically inactive BPLF1 induced K48-linked autoubiquitination and degradation of TRIM25 while the ligase was mono- or di-ubiquitinated in the presence of the active viral enzyme and formed cytosolic aggregates decorated by the autophagy receptor p62/SQSTM1. Aggregate formation and the inhibition of IFN response were abolished by mutations of solvent exposed residues in helix-2 of BPLF1 that prevented binding to 14-3-3 while preserving both catalytic activity and binding to TRIM25. 14-3-3 interacted with the Coiled-Coil (CC) domain of TRIM25 in in vitro pulldown, while BPLF1 interacted with both the CC and B-box domains, suggesting that 14-3-3 positions BPLF1 at the ends of the CC dimer, close to known autoubiquitination sites. Our findings provide a molecular understanding of the mechanism by which a viral deubiquitinase inhibits the IFN response and emphasize the role of 14-3-3 proteins in modulating antiviral defenses.


Asunto(s)
Proteínas 14-3-3/metabolismo , Infecciones por Herpesviridae/inmunología , Herpesviridae/inmunología , Interferón Tipo I/farmacología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral , Proteínas 14-3-3/genética , Antivirales/farmacología , Células HeLa , Herpesviridae/efectos de los fármacos , Infecciones por Herpesviridae/tratamiento farmacológico , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Unión Proteica , Proteolisis , Transducción de Señal , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/genética
5.
PLoS Pathog ; 14(1): e1006852, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357390

RESUMEN

The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. The proteins are expressed during the productive virus cycle and are incorporated into infectious virus particles, being delivered to the target cells upon primary infection. Members of this viral enzyme family were shown to regulate different aspects of the virus life cycle and the innate anti-viral response. However, only few substrates have been identified and the mechanisms of these effects remain largely unknown. In order to gain insights on the substrates and signaling pathways targeted by the viral enzymes, we have used co-immunoprecipitation and mass spectrometry to identify cellular proteins that interact with the Epstein-Barr virus encoded homologue BPLF1. Several members of the 14-3-3-family of scaffold proteins were found amongst the top hits of the BPLF1 interactome, suggesting that, through this interaction, BPLF1 may regulate a variety of cellular signaling pathways. Analysis of the shared protein-interaction network revealed that BPLF1 promotes the assembly of a tri-molecular complex including, in addition to 14-3-3, the ubiquitin ligase TRIM25 that participates in the innate immune response via ubiquitination of cytosolic pattern recognition receptor, RIG-I. The involvement of BPLF1 in the regulation of this signaling pathway was confirmed by inhibition of the type-I IFN responses in cells transfected with a catalytically active BPLF1 N-terminal domain or expressing the endogenous protein upon reactivation of the productive virus cycle. We found that the active viral enzyme promotes the dimerization and autoubiquitination of TRIM25. Upon triggering of the IFN response, RIG-I is recruited to the complex but ubiquitination is severely impaired, which functionally inactivates the RIG-I signalosome. The capacity to bind to and functionally inactivate the RIG-I signalosome is shared by the homologues encoded by other human herpesviruses.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Herpesviridae/enzimología , Interferones/farmacología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Ubiquitinación , Replicación Viral
6.
Cell Microbiol ; 21(12): e13099, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31414579

RESUMEN

Several commensal and pathogenic Gram-negative bacteria produce DNA-damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin-producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin-producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC-deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3-kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin-producing bacteria in promoting a microenvironment conducive to malignant transformation.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Colon/metabolismo , Células Epiteliales/metabolismo , Inestabilidad Genómica/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella enterica/metabolismo , Poliposis Adenomatosa del Colon/microbiología , Poliposis Adenomatosa del Colon/patología , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Daño del ADN/genética , Células Epiteliales/microbiología , Células Epiteliales/patología , Genes Supresores de Tumor/fisiología , Humanos , Ratones , Mutágenos/metabolismo , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Transducción de Señal/genética , Microambiente Tumoral/genética
7.
Int J Cancer ; 144(1): 98-109, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29978480

RESUMEN

We have addressed the role of bacterial co-infection in viral oncogenesis using as model Epstein-Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram-negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV-negative epithelial cells to the virus in the presence of sub-lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co-infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV-induced malignant transformation of epithelial cells.


Asunto(s)
Aggregatibacter actinomycetemcomitans/fisiología , Transformación Celular Neoplásica , Células Epiteliales/microbiología , Células Epiteliales/virología , Herpesvirus Humano 4/fisiología , Activación Viral/fisiología , Toxinas Bacterianas/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Interacciones Microbianas/fisiología , Mutágenos/farmacología
8.
PLoS Pathog ; 13(4): e1006338, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28414785

RESUMEN

Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , MicroARNs/genética , Proteínas Nucleares/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Proteínas Virales/genética , Línea Celular , Regulación hacia Abajo , Genes Reporteros , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , MicroARNs/metabolismo , Proteínas Nucleares/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
9.
Semin Cancer Biol ; 26: 43-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24486644

RESUMEN

Tumor viruses promote cell proliferation in order to gain access to an environment suitable for persistence and replication. The expression of viral products that promote growth transformation is often accompanied by the induction of multiple signs of telomere dysfunction, including telomere shortening, damage of telomeric DNA and chromosome instability. Long-term survival and progression to full malignancy require the bypassing of senescence programs that are triggered by the damaged telomeres. Here we review different strategies by which tumor viruses interfere with telomere homeostasis during cell transformation. This frequently involves the activation of telomerase, which assures both the integrity and functionality of telomeres. In addition, recent evidence suggests that oncogenic viruses may activate a recombination-based mechanism for telomere elongation known as Alternative Lengthening of Telomeres (ALT). This error-prone strategy promotes genomic instability and could play an important role in viral oncogenesis.


Asunto(s)
Virus Oncogénicos/fisiología , Telómero/genética , Telómero/metabolismo , Replicación Viral , Animales , Transformación Celular Viral , Senescencia Celular/genética , Inestabilidad Genómica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virología , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/metabolismo , Infecciones Tumorales por Virus/virología
10.
PLoS Pathog ; 9(10): e1003664, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130483

RESUMEN

The large tegument proteins of herpesviruses contain N-terminal cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activities, but the function of the enzymes during virus replication remains largely unknown. Using as model BPLF1, the homologue encoded by Epstein-Barr virus (EBV), we found that induction of the productive virus cycle does not affect the total level of ubiquitin-conjugation but is accompanied by a BPLF1-dependent decrease of NEDD8-adducts and accumulation of free NEDD8. Expression of BPLF1 promotes cullin degradation and the stabilization of cullin-RING ligases (CRLs) substrates in the nucleus, while cytoplasmic CRLs and their substrates are not affected. The inactivation of nuclear CRLs is reversed by the N-terminus of CAND1, which inhibits the binding of BPLF1 to cullins and prevents efficient viral DNA replication. Targeting of the deneddylase activity to the nucleus is dependent on processing of the catalytic N-terminus by caspase-1. Inhibition of caspase-1 severely impairs viral DNA synthesis and the release of infectious virus, pointing a previously unrecognized role of the cellular response to danger signals triggered by EBV reactivation in promoting virus replication.


Asunto(s)
Caspasa 1/metabolismo , Núcleo Celular/enzimología , Replicación del ADN/fisiología , ADN Viral/biosíntesis , Herpesvirus Humano 4/fisiología , Proteínas Reguladoras y Accesorias Virales/biosíntesis , Replicación Viral/fisiología , Caspasa 1/genética , Línea Celular , Núcleo Celular/virología , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Citoplasma/enzimología , Citoplasma/metabolismo , Citoplasma/virología , ADN Viral/genética , Regulación Viral de la Expresión Génica/fisiología , Humanos , Proteína NEDD8 , Proteolisis , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética
11.
Nucleic Acids Res ; 41(5): 2950-62, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23358825

RESUMEN

Viral proteins reprogram their host cells by hijacking regulatory components of protein networks. Here we describe a novel property of the Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1) that may underlie the capacity of the virus to promote a global remodeling of chromatin architecture and cellular transcription. We found that the expression of EBNA1 in transfected human and mouse cells is associated with decreased prevalence of heterochromatin foci, enhanced accessibility of cellular DNA to micrococcal nuclease digestion and decreased average length of nucleosome repeats, suggesting de-protection of the nucleosome linker regions. This is a direct effect of EBNA1 because targeting the viral protein to heterochromatin promotes large-scale chromatin decondensation with slow kinetics and independent of the recruitment of adenosine triphosphate-dependent chromatin remodelers. The remodeling function is mediated by a bipartite Gly-Arg rich domain of EBNA1 that resembles the AT-hook of High Mobility Group A (HMGA) architectural transcription factors. Similar to HMGAs, EBNA1 is highly mobile in interphase nuclei and promotes the mobility of linker histone H1, which counteracts chromatin condensation and alters the transcription of numerous cellular genes. Thus, by regulating chromatin compaction, EBNA1 may reset cellular transcription during infection and prime the infected cells for malignant transformation.


Asunto(s)
Proteínas HMGA/fisiología , Herpesvirus Humano 4/fisiología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Antígenos Nucleares/fisiología , Línea Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Redes Reguladoras de Genes , Heterocromatina/metabolismo , Histonas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Ratones , Imitación Molecular , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Transcriptoma , Proteínas Virales/química , Proteínas Virales/fisiología
12.
Cell Microbiol ; 15(1): 98-113, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22998585

RESUMEN

Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.


Asunto(s)
Toxinas Bacterianas/metabolismo , Daño del ADN/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Mutágenos/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Ratas
13.
J Cell Sci ; 124(Pt 16): 2735-42, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21807938

RESUMEN

The DNA damage response triggered by bacterial cytolethal distending toxins (CDTs) is associated with activation of the actin-regulating protein RhoA and phosphorylation of the downstream-regulated mitogen-activated protein kinase (MAPK) p38, which promotes the survival of intoxicated (i.e. cells exposed to a bacterial toxin) cells. To identify the effectors of this CDT-induced survival response, we screened a library of 4492 Saccharomyces cerevisiae mutants that carry deletions in nonessential genes for reduced growth following inducible expression of CdtB. We identified 78 genes whose deletion confers hypersensitivity to toxin. Bioinformatics analysis revealed that DNA repair and endocytosis were the two most overrepresented signaling pathways. Among the human orthologs present in our data set, FEN1 and TSG101 regulate DNA repair and endocytosis, respectively, and also share common interacting partners with RhoA. We further demonstrate that FEN1, but not TSG101, regulates cell survival, MAPK p38 phosphorylation, RhoA activation and actin cytoskeleton reorganization in response to DNA damage. Our data reveal a previously unrecognized crosstalk between DNA damage and cytoskeleton dynamics in the regulation of cell survival, and might provide new insights on the role of chronic bacteria infection in carcinogenesis.


Asunto(s)
Toxinas Bacterianas/metabolismo , Supervivencia Celular , Citoesqueleto/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Toxinas Bacterianas/genética , Supervivencia Celular/genética , Biología Computacional , Citoesqueleto/ultraestructura , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endocitosis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endonucleasas de ADN Solapado/genética , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Eliminación de Secuencia/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Biochem Biophys Res Commun ; 431(4): 706-11, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23348225

RESUMEN

The Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1) plays a pivotal role in EBV infection by anchoring the viral episome to cellular DNA, which regulates replication and partitioning in dividing cells. Here, we have used fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) techniques to study the interaction of EBNA1 with cellular chromatin in interphase and mitosis. This analysis revealed that while EBNA1 is highly mobile in both conditions, mobility is significantly reduced in mitosis when an immobile fraction is also detected. The N-terminal chromatin-targeting module of EBNA1 includes two Gly-Arg rich domains (GR1 and GR2) separated by a Gly-Ala repeat (GAr) of variable length. Using a set of deletion mutants and GFP-fusion reporters, we found that the GR domains cooperatively determine the mobility of EBNA1, whereas mobility is increased by the interposed GAr in a length-dependent manner. These findings highlight a previously unrecognized property of the interaction of EBNA1 with cellular chromatin that may fine-tune its function in the maintenance of viral latency.


Asunto(s)
Cromatina/metabolismo , Dipéptidos/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Secuencias Repetitivas de Aminoácido , Línea Celular Tumoral , Dipéptidos/genética , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Herpesvirus Humano 4/fisiología , Humanos , Interfase , Mitosis , Estructura Terciaria de Proteína , Eliminación de Secuencia , Latencia del Virus
15.
Biochem Biophys Res Commun ; 433(4): 390-5, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23500468

RESUMEN

The Ubiquitin Specific Protease-19 (USP19) regulates cell cycle progression and is involved in the cellular response to different types of stress, including the unfolded protein response (UPR), hypoxia and muscle atrophy. Using the unique N-terminal domain as bait in a yeast-two hybrid screen we have identified the ubiquitin ligases Seven In Absentia Homolog (SIAH)-1 and SIAH2 as binding partners of USP19. The interaction is mediated by a SIAH-consensus binding motif and promotes USP19 ubiquitylation and proteasome-dependent degradation. These findings identify USP19 as a common substrate of the SIAH ubiquitin ligases.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Western Blotting , Biología Computacional/métodos , Endopeptidasas/genética , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
FASEB J ; 26(12): 5060-70, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22932395

RESUMEN

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme of unknown function that is highly expressed in neurons and overexpressed in several human cancers. UCH-L1 has been implicated in the regulation of phenotypic properties associated with malignant cell growth but the underlying mechanisms have not been elucidated. By comparing cells expressing catalytically active or inactive versions of UCH-L1, we found that the active enzyme enhances cell adhesion, spreading, and migration; inhibits anoikis; and promotes anchorage independent growth. UCH-L1 accumulates at the motile edge of the cell membrane during the initial phases of adhesion, colocalizes with focal adhesion kinase (FAK), p120-catenin, and vinculin, and enhances the formation of focal adhesions, which correlates with enhanced FAK activation. The involvement of UCH-L1 in the regulation of focal adhesions and adherens junctions is supported by coimmunoprecipitation with key components of these complexes, including FAK, paxillin, p120-catenin, ß-catenin, and vinculin. UCH-L1 stabilizes focal adhesion signaling in the absence of adhesion, as assessed by reduced caspase-dependent cleavage of FAK following cell detachment and sustained activity of the AKT signaling pathway. These findings offer new insights on the molecular interactions through which the deubiquitinating enzyme regulates the survival, proliferation, and metastatic potential of malignant cells.


Asunto(s)
Movimiento Celular , Proliferación Celular , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Anoicis , Biocatálisis , Western Blotting , Cateninas/metabolismo , Adhesión Celular , Membrana Celular/metabolismo , Supervivencia Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Unión Proteica , Transducción de Señal , Ubiquitina Tiolesterasa/genética , Vinculina/metabolismo , beta Catenina/metabolismo , Catenina delta , Proteína Fluorescente Roja
17.
PLoS Biol ; 8(11): e1000545, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21124883

RESUMEN

Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors.


Asunto(s)
Enzimas/metabolismo , Factor 3 de Iniciación Eucariótica/fisiología , Receptores Notch/metabolismo , Ubiquitina/metabolismo , Línea Celular , Factor 3 de Iniciación Eucariótica/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Transducción de Señal
18.
Nat Commun ; 14(1): 8315, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097648

RESUMEN

The strategies adopted by viruses to reprogram the translation and protein quality control machinery and promote infection are poorly understood. Here, we report that the viral ubiquitin deconjugase (vDUB)-encoded in the large tegument protein of Epstein-Barr virus (EBV BPLF1)-regulates the ribosomal quality control (RQC) and integrated stress responses (ISR). The vDUB participates in protein complexes that include the RQC ubiquitin ligases ZNF598 and LTN1. Upon ribosomal stalling, the vDUB counteracts the ubiquitination of the 40 S particle and inhibits the degradation of translation-stalled polypeptides by the proteasome. Impairment of the RQC correlates with the readthrough of stall-inducing mRNAs and with activation of a GCN2-dependent ISR that redirects translation towards upstream open reading frames (uORFs)- and internal ribosome entry sites (IRES)-containing transcripts. Physiological levels of active BPLF1 promote the translation of the EBV Nuclear Antigen (EBNA)1 mRNA in productively infected cells and enhance the release of progeny virus, pointing to a pivotal role of the vDUB in the translation reprogramming that enables efficient virus production.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Ubiquitina , Humanos , Ubiquitina/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Ribosomas/metabolismo , Ubiquitinación , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Biosíntesis de Proteínas , Proteínas Portadoras/metabolismo
19.
J Biol Chem ; 286(22): 19565-75, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21471195

RESUMEN

Protein domains that act as degradation and stabilization signals regulate the rate of turnover of proteasomal substrates. Here we report that the bipartite Gly-Arg repeat of the Epstein-Barr virus (EBV) nuclear antigen (EBNA)-1 acts as a stabilization signal that inhibits proteasomal degradation in the nucleus by promoting binding to cellular DNA. Protection can be transferred by grafting the domain to unrelated proteasomal substrates and does not involve changes of ubiquitylation. Protection is also afforded by other protein domains that, similar to the Gly-Arg repeat, mediate high avidity binding to DNA, as exemplified by resistance to detergent extraction. Our findings identify high avidity binding to DNA as a portable inhibitory signal that counteracts proteasomal degradation.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ubiquitinadas/metabolismo , Núcleo Celular/genética , ADN/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Células HeLa , Herpesvirus Humano 4/genética , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Señales de Clasificación de Proteína/genética , Proteínas Ubiquitinadas/genética
20.
Biochem Biophys Res Commun ; 427(3): 490-6, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23022198

RESUMEN

The proteasome is the major non-lysosomal proteolytic machine in cells that, through degradation of ubiquitylated substrates, regulates virtually all cellular functions. Numerous accessory proteins influence the activity of the proteasome by recruiting or deubiquitylating proteasomal substrates, or by maintaining the integrity of the complex. Here we show that the ubiquitin specific protease (USP)-4, a deubiquitylating enzyme with specificity for both Lys48 and Lys63 ubiquitin chains, interacts with the S9/Rpn6 subunit of the proteasome via an internal ubiquitin-like (UBL) domain. S9/Rpn6 acts as a molecular clamp that holds together the proteasomal core and regulatory sub-complexes. Thus, the interaction with USP4 may regulate the structure and function of the proteasome or the turnover of specific proteasomal substrates.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Células HEK293 , Células HeLa , Humanos , Complejo de la Endopetidasa Proteasomal/química , Estructura Terciaria de Proteína , Proteasas Ubiquitina-Específicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA