Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biometals ; 37(2): 321-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37917351

RESUMEN

Candida spp. are the commonest fungal pathogens worldwide. Antifungal resistance is a problem that has prompted the discovery of novel anti-Candida drugs. Herein, 25 compounds, some of them containing copper(II), cobalt(II) and manganese(II) ions, were initially evaluated for inhibiting the growth of reference strains of Candida albicans and Candida tropicalis. Eight (32%) of the compounds inhibited the proliferation of these yeasts, displaying minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 µg/mL and minimum fungicidal concentration (MFCs) from 62.5 to 250 µg/mL. Drug-likeness/pharmacokinetic calculated by SwissADME indicated that the 8 selected compounds were suitable for use as topical drugs. The complex CTP, Cu(theo)2phen(H2O).5H2O (theo = theophylline; phen = 1,10-phenanthroline), was chosen for further testing against 10 medically relevant Candida species that were resistant to fluconazole/amphotericin B. CTP demonstrated a broad spectrum of action, inhibiting the growth of all 20 clinical fungal isolates, with MICs from 7.81 to 62.5 µg/mL and MFCs from 15.62 to 62.5 µg/mL. Conversely, CTP did not cause lysis in erythrocytes. The toxicity of CTP was evaluated in vivo using Galleria mellonella and Tenebrio molitor. CTP had no or low levels of toxicity at doses ranging from 31.25 to 250 µg/mL for 5 days. After 24 h of treatment, G. mellonella larvae exhibited high survival rates even when exposed to high doses of CTP (600 µg/mL), with the 50% cytotoxic concentration calculated as 776.2 µg/mL, generating selectivity indexes varying from 12.4 to 99.4 depending on each Candida species. These findings suggest that CTP could serve as a potential drug to treat infections caused by Candida species resistant to clinically available antifungals.


Asunto(s)
Antifúngicos , Candida , Fenantrolinas , Antifúngicos/farmacología , Antifúngicos/química , Cobre/farmacología , Teofilina/farmacología , Candida albicans , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana
2.
Chaos ; 34(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377286

RESUMEN

Within the de Broglie-Bohm theory, we numerically study a generic two-dimensional anharmonic oscillator including cubic and quartic interactions in addition to a bilinear coupling term. Our analysis of the quantum velocity fields and trajectories reveals the emergence of dynamical vortices. In their vicinity, fingerprints of chaotic behavior such as unpredictability and sensitivity to initial conditions are detected. The simultaneous presence of the off-diagonal -kxy and nonlinear terms leads to robust quantum chaos very analogous to its classical version.

3.
Bioprocess Biosyst Eng ; 47(3): 313-323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38438572

RESUMEN

Molecular docking is an important computational analysis widely used to predict the interaction of enzymes with several starting materials for developing new valuable products from several starting materials, including oils and fats. In the present study, molecular docking was used as an efficient in silico screening tool to select biocatalysts with the highest catalytic performance in butyl esters production in a solvent-free system, an eco-friendly approach, via direct esterification of free fatty acids from Licuri oil with butanol. For such purpose, three commercial lipase preparations were used to perform molecular docking studies such as Burkholderia cepacia (BCL), Porcine pancreatic (PPL), and Candida rugosa (CRL). Concurrently, the results obtained in BCL and CRL are the most efficient in the esterification process due to their higher preference for catalyzing the esterification of lauric acid, the main fatty acid found in the licuri oil composition. Meanwhile, PPL was the least efficient because it preferentially interacts with minor fatty acids. Molecular docking with the experimental results indicated the better performance in the synthesis of esters was BCL. In conclusion, experimental results analysis shows higher enzymatic productivity in esterification reactions of 1294.83 µmol/h.mg, while the CRL and PPL demonstrated the lowest performance (189.87 µmol / h.mg and 23.96 µmol / h.mg, respectively). Thus, molecular docking and experimental results indicate that BCL is a more efficient lipase to produce fatty acids and esters from licuri oil with a high content of lauric acid. In addition, this study also demonstrates the application of molecular docking as an important tool for lipase screening to achieve more sustainable production of butyl esters with a view synthesis of biolubricants.


Asunto(s)
Ácidos Grasos , Lipasa , Animales , Porcinos , Lipasa/química , Simulación del Acoplamiento Molecular , Dominio Catalítico , Ácidos Grasos/química , Esterificación , Ésteres , Ácidos Láuricos , Enzimas Inmovilizadas/metabolismo
4.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339717

RESUMEN

The literature on motor development and training assumes a hierarchy for learning skills-learning the "fundamentals"-that has yet to be empirically demonstrated. The present study addressed this issue by verifying (1) whether this strong hierarchy (i.e., the proficiency barrier) holds between three fundamental skills and three sport skills and (2) considering different transfer processes (generalization/adaptation) that would occur as a result of the existence of this strong hierarchy. Twenty-seven children/adolescents participated in performing the countermovement jump, standing long jump, leap, high jump, long jump, and hurdle transposition. We identified the proficiency barrier in two pairs of tasks (between the countermovement jump and high jump and between the standing long jump and long jump). Nonetheless, the transfer processes were not related to the proficiency barrier. We conclude that the proposed learning hierarchy holds for some tasks. The underlying reason for this is still unknown.

5.
J Therm Biol ; 119: 103781, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38232473

RESUMEN

Ice slurry ingestion during prolonged exercises may improve performance in hot environments; however, the ideal amount and timing of ingestion are still uncertain. We determined whether ad libitum ice slurry ingestion influences physiological and perceptual variables and half-marathon performance while comparing the effects of the amount and moment of ingestion between ice slurry and water at 37 °C. Ten trained participants (28 ± 2 years; mean and SD) were required to run two half marathons while consuming either ice slurry (-1 °C; Ad-1) or water (37 °C; 37 CE) ad libitum. They then performed two other half marathons where, during one, they were required to ingest an amount of water equivalent to the amount consumed during the Ad-1 trial (Pro37), and in the other, to ingest ice slurry in the amount consumed during the 37 CE trial (Pro-1). During the half marathons, dry-bulb temperature and relative humidity were controlled at 33.1 ± 0.3 °C and 60 ± 3%, respectively. Ad-1 ingestion (349.6 ± 58.5 g) was 45% less than 37 CE ingestion (635.5 ± 135.8 g). Physical performance, heart rate, perceived exertion, body temperatures, and thermal perception were not influenced by the temperature or amount of beverage ingestion. However, a secondary analysis suggested that lower beverage ingestion was associated with improved performance (Ad-1 + Pro37 vs. 37 CE + Pro-1: -4.0 min, Cohen's d = 0.39), with a significant relationship between lower beverage ingestion and faster running time (b = 0.02, t = 4.01, p < 0.001). In conclusion, ice slurry ingestion does not affect performance or physiological or perceptual variables during a half marathon in a hot environment. Preliminary evidence suggests that lower beverage ingestion (ice slurry or warm water) is associated with improved performance compared to higher ingestion.


Asunto(s)
Temperatura Corporal , Agua , Humanos , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/fisiología , Hielo , Carrera de Maratón , Calor , Ingestión de Alimentos
6.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338371

RESUMEN

This work presents a framework for evaluating hybrid nanoflowers using Burkholderia cepacia lipase. It was expanded on previous findings by testing lipase hybrid nanoflowers (hNF-lipase) formation over a wide range of pH values (5-9) and buffer concentrations (10-100 mM). The free enzyme activity was compared with that of hNF-lipase. The analysis, performed by molecular docking, described the effect of lipase interaction with copper ions. The morphological characterization of hNF-lipase was performed using scanning electron microscopy. Fourier Transform Infrared Spectroscopy performed the physical-chemical characterization. The results show that all hNF-lipase activity presented values higher than that of the free enzyme. Activity is higher at pH 7.4 and has the highest buffer concentration of 100 mM. Molecular docking analysis has been used to understand the effect of enzyme protonation on hNF-lipase formation and identify the main the main binding sites of the enzyme with copper ions. The hNF-lipase nanostructures show the shape of flowers in their micrographs from pH 6 to 8. The spectra of the nanoflowers present peaks typical of the amide regions I and II, current in lipase, and areas with P-O vibrations, confirming the presence of the phosphate group. Therefore, hNF-lipase is an efficient biocatalyst with increased catalytic activity, good nanostructure formation, and improved stability.


Asunto(s)
Cobre , Nanoestructuras , Estabilidad de Enzimas , Cobre/química , Lipasa/química , Simulación del Acoplamiento Molecular , Nanoestructuras/química , Enzimas Inmovilizadas/química , Espectroscopía Infrarroja por Transformada de Fourier , Iones
7.
J Neurophysiol ; 129(6): 1322-1333, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37096909

RESUMEN

Noninvasive recordings of motor unit (MU) spike trains help us understand how the nervous system controls movement and how it adapts to various physiological conditions. The majority of participants in human and nonhuman animal physiology studies are male, and it is assumed that mechanisms uncovered in these studies are shared between males and females. However, sex differences in neurological impairment and physical performance warrant the study of sex as a biological variable in human physiology and performance. To begin addressing this gap in the study of biophysical properties of human motoneurons, we quantified MU discharge rates and estimates of persistent inward current (PIC) magnitude in both sexes. We decomposed MU spike trains from the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) using high-density surface electromyography and blind source separation algorithms. Ten participants of each sex performed slow triangular (10 s up and down) isometric contractions to a peak of 30% of their maximum voluntary contraction. We then used linear mixed-effects models to determine if peak discharge rate and estimates of PICs were predicted by the fixed effects of sex, muscle, and their interaction. Despite a lack of sex-differences in peak discharge rates across all muscles, estimates of PICs were larger [χ2(1) = 6.26, P = 0.012] in females [4.73 ± 0.242 pulses per second (pps)] than in males (3.81 ± 0.240 pps). These findings suggest that neuromodulatory drive, inhibitory input, and/or biophysical properties of motoneurons differ between the sexes and may contribute to differences in MU discharge patterns.NEW & NOTEWORTHY Sex-related differences in motoneuron analyses have emerged with greater inclusion of female participants, however, mechanisms for these differences remain unclear. Estimates of persistent inward currents (i.e., ΔF) in motoneurons of the lower limb muscles were larger in females than in males. This suggests neuromodulatory drive, monoaminergic signaling, intrinsic motoneuron properties, and/or descending motor commands may differ between the sexes, which provides a potential mechanism underlying previously reported sex-related differences in motoneuron discharge patterns.


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Humanos , Masculino , Femenino , Músculo Esquelético/fisiología , Electromiografía , Contracción Isométrica/fisiología , Neuronas Motoras/fisiología , Extremidad Inferior
8.
Ann Rheum Dis ; 82(11): 1464-1473, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37550003

RESUMEN

OBJECTIVES: Prior studies noted that chondrocyte SIRT6 activity is repressed in older chondrocytes rendering cells susceptible to catabolic signalling events implicated in osteoarthritis (OA). This study aimed to define the effect of Sirt6 deficiency on the development of post-traumatic and age-associated OA in mice. METHODS: Male cartilage-specific Sirt6-deficient mice and Sirt6 intact controls underwent destabilisation of the medial meniscus (DMM) or sham surgery at 16 weeks of age and OA severity was analysed at 6 and 10 weeks postsurgery. Age-associated OA was assessed in mice aged 12 and 18 months of age. OA severity was analysed by micro-CT, histomorphometry and scoring of articular cartilage structure, toluidine blue staining and osteophyte formation. SIRT6-regulated pathways were analysed in human chondrocytes by RNA-sequencing, qRT-PCR and immunoblotting. RESULTS: Sirt6-deficient mice displayed enhanced DMM-induced OA severity and accelerated age-associated OA when compared with controls, characterised by increased cartilage damage, osteophyte formation and subchondral bone sclerosis. In chondrocytes, RNA-sequencing revealed that SIRT6 depletion significantly repressed cartilage extracellular matrix (eg, COL2A1) and anabolic growth factor (eg, insulin-like growth factor-1 (IGF-1)) gene expression. Gain-of-function and loss-of-function studies in chondrocytes demonstrated that SIRT6 depletion attenuated, whereas adenoviral overexpression or MDL-800-induced SIRT6 activation promoted IGF-1 signalling by increasing Aktser473 phosphorylation. CONCLUSIONS: SIRT6 deficiency increases post-traumatic and age-associated OA severity in vivo. SIRT6 profoundly regulated the pro-anabolic and pro-survival IGF-1/Akt signalling pathway and suggests that preserving the SIRT6/IGF-1/Akt axis may be necessary to protect cartilage from injury-associated or age-associated OA. Targeted therapies aimed at increasing SIRT6 function could represent a novel strategy to slow or stop OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteofito , Sirtuinas , Masculino , Animales , Ratones , Humanos , Anciano , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo , ARN/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Modelos Animales de Enfermedad
9.
Cancer Invest ; 41(10): 830-836, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37962565

RESUMEN

Introduction melanoma patients who become stage III after a positive sentinel node biopsy (SNB) may have several patterns of recurrence patients and methods retrospective analysis of melanoma patients who have undergone SNB in a single institution from 2000 to 2015. Results There were 111 recurrences (45.1%) among 246 (20.3%) SNB positive patients and median DRFS was 77.7 months. After initial treatment, further recurrences occurred in 68 (77.3%) patients, regardless the site of initial recurrence conclusions multimodal strategies are recommended to achieve better results when managing stage III melanoma patients after a positive SNB.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/cirugía , Melanoma/patología , Estudios Retrospectivos , Biopsia del Ganglio Linfático Centinela , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/patología , Escisión del Ganglio Linfático
10.
Exp Physiol ; 108(6): 852-864, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37018484

RESUMEN

NEW FINDINGS: What is the central question of this study? The aim was to identify the factors predicting the body core temperature of athletes at the end of a 10 km self-paced run in a hot environment. What is the main finding and its importance? Hyperthermia in athletes subjected to self-paced running depends on several factors, highlighting the integrated control of core temperature during exercise under environmental heat stress. Five of the seven variables that significantly predicted core temperature are not invasive and, therefore, practical for use outside the laboratory environment: heart rate, sweat rate, wet-bulb globe temperature, running speed and maximal oxygen consumption. ABSTRACT: Measurement of body core temperature (Tcore ) is paramount to determining the thermoregulatory strain of athletes. However, standard measurement procedures of Tcore are not practical for extended use outside the laboratory environment. Therefore, determining the factors that predict Tcore during a self-paced run is crucial for creating more effective strategies to minimize the heat-induced impairment of endurance performance and reduce the occurrence of exertional heatstroke. The aim of this study was to identify the factors predicting Tcore values attained at the end of a 10 km time trial (end-Tcore ) under environmental heat stress. Initially, we extracted data obtained from 75 recordings of recreationally trained men and women. Next, we ran hierarchical multiple linear regression analyses to understand the predictive power of the following variables: wet-bulb globe temperature, average running speed, initial Tcore , body mass, differences between Tcore and skin temperature (Tskin ), sweat rate, maximal oxygen uptake, heart rate and change in body mass. Our data indicated that Tcore increased continuously during exercise, attaining 39.6 ± 0.5°C (mean ± SD) after 53.9 ± 7.5 min of treadmill running. This end-Tcore value was primarily predicted by heart rate, sweat rate, differences between Tcore and Tskin , wet-bulb globe temperature, initial Tcore , running speed and maximal oxygen uptake, in this order of importance (ß power values corresponded to 0.462, -0.395, 0.393, 0.327, 0.277, 0.244 and 0.228, respectively). In conclusion, several factors predict Tcore in athletes subjected to self-paced running under environmental heat stress. Moreover, considering the conditions investigated, heart rate and sweat rate, two practical (non-invasive) variables, have the highest predictive power.


Asunto(s)
Trastornos de Estrés por Calor , Carrera , Masculino , Humanos , Femenino , Temperatura Corporal/fisiología , Temperatura , Calor , Regulación de la Temperatura Corporal/fisiología , Carrera/fisiología , Respuesta al Choque Térmico/fisiología , Oxígeno
11.
Curr Genomics ; 24(5): 330-335, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38235354

RESUMEN

Background: Dysferlinopathies represent a group of limb girdle or distal muscular dystrophies with an autosomal-recessive inheritance pattern resulting from the presence of pathogenic variants in the dysferlin gene (DYSF). Objective: In this work, we describe a population from a small city in Brazil carrying the c.5979dupA pathogenic variant of DYSF responsible for limb girdle muscular dystrophy type 2R and distal muscular dystrophy. Methods: Genotyping analyses were performed by qPCR using customized probe complementary to the region with the duplication under analysis in the DYSF. Results: A total of 104 individuals were examined. c.5979dupA was identified in 48 (46.15%) individuals. Twenty-three (22%) were homozygotes, among whom 13 (56.5%) were female. A total of 91.3% (21) of homozygous individuals had a positive family history, and seven (30.4%) reported consanguineous marriages. Twenty-five (24%) individuals were heterozygous (25.8±16 years) for the same variant, among whom 15 (60%) were female. The mean CK level was 697 IU for homozygotes, 140.5 IU for heterozygotes and 176 IU for wild-type homo-zygotes. The weakness distribution pattern showed 17.3% of individuals with a proximal pattern, 13% with a distal pattern and 69.6% with a mixed pattern. Fatigue was present in 15 homozygotes and one heterozygote. Conclusion: The high prevalence of this variant in individuals from this small community can be explained by a possible founder effect associated with historical, geographical and cultural aspects.

12.
Planta ; 256(3): 57, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960361

RESUMEN

MAIN CONCLUSION: Amplification and overexpression of the target site glutamine synthetase, specifically the plastid-located isoform, confers resistance to glufosinate in Amaranthus palmeri. This mechanism is novel among glufosinate-resistant weeds. Amaranthus palmeri has recently evolved resistance to glufosinate herbicide. Several A. palmeri populations from Missouri and Mississippi, U.S.A. had survivors when sprayed with glufosinate-ammonium (GFA, 657 g ha-1). One population, MO#2 (fourfold resistant) and its progeny (sixfold resistant), were used to study the resistance mechanism, focusing on the herbicide target glutamine synthetase (GS). We identified four GS genes in A. palmeri; three were transcribed: one coding for the plastidic protein (GS2) and two coding for cytoplasmic isoforms (GS1.1 and GS1.2). These isoforms did not contain mutations associated with resistance. The 17 glufosinate survivors studied showed up to 21-fold increase in GS2 copies. GS2 was expressed up to 190-fold among glufosinate survivors. GS1.1 was overexpressed > twofold in only 3 of 17, and GS1.2 in 2 of 17 survivors. GS inhibition by GFA causes ammonia accumulation in susceptible plants. Ammonia level was analyzed in 12 F1 plants. GS2 expression was negatively correlated with ammonia level (r = - 0.712); therefore, plants with higher GS2 expression are less sensitive to GFA. The operating efficiency of photosystem II (ϕPSII) of Nicotiana benthamiana overexpressing GS2 was four times less inhibited by GFA compared to control plants. Therefore, increased copy and overexpression of GS2 confer resistance to GFA in A. palmeri (or other plants). We present novel understanding of the role of GS2 in resistance evolution to glufosinate.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Amaranthus/metabolismo , Aminobutiratos , Amoníaco/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacología
13.
Naturwissenschaften ; 109(3): 27, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471742

RESUMEN

Parasitic plants are important sources of stress and can strongly impact their host plants through direct and indirect associations with other herbivores and their associated organisms. In the tropics, mistletoes are frequent parasitic plants, influencing different trophic levels involved with the host plant. Here, we investigated the direct and indirect influences of multiple partners involved in interactions between the mistletoe Psittachantus robustus and its host tree, Vochysia thyrsoidea. More specifically, we assessed if the presence of the mistletoe modified herbivory levels of its host by altering the diversity of associated insects. We found that insect feeding guild modulated mistletoe influence on insect community, and there were fewer species and individuals of leaf-chewing insects in parasitized than non-parasitized trees. Despite this decrease in leaf-chewing insects, there were increased levels of herbivory in parasitized plants. Mistletoes' presence did not influence the hemipteran sap-sucking insects, but this herbivore guild directly responded to the abundance of their associated ants. Overall, our study found empirical support for the crucial role of mistletoes on their host-associated organisms, ultimately shaping the herbivory levels of their tree hosts. By exposing the distinct effects of the different partners involved, our results shed light on the intricated interactions mediated by parasitic plants, opening the path for new investigations.


Asunto(s)
Herbivoria , Muérdago , Animales , Humanos , Insectos , Plantas , Árboles
14.
Bioprocess Biosyst Eng ; 45(7): 1149-1162, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35585433

RESUMEN

Lipases (E.C. 3.1.1.3) have buried active sites and used access tunnels in the transport of substrates and products for biotransformation processes. Computational methods are used to predict the trajectory and energy profile of ligands through these tunnels, and they complement the experimental methodologies because they filter data, optimizing laboratory time and experimental costs. Access tunnels of Burkholderia cepacia lipase (BCL), Candida rugosa lipase (CRL), and porcine pancreas lipase (PPL) and the transport of fatty acids, alcohols and esters through the tunnels were evaluated using the online server CaverWeb V1.0, and server calculation results were compared with experimental data (productivity). BCL showed higher productivity with palmitic acid-C16:0 (4029.95 µmol/h mg); CRL obtained productivity for oleic acid-C18:1 (380.80 µmol/h mg), and PPL achieved productivity for lauric acid-C12:0 (71.27 µmol/h mg). The highest probability of transport for BCL is through the tunnels 1 and 2, for CRL through the tunnel 1, and for PPL through the tunnels 1, 2, 3 and 4. Thus, the best in silico result was the transport of the substrates palmitic acid and ethanol and product ethyl palmitate in tunnel 1 of BCL. This result corroborates with the best result for the productivity data (higher productivity for BCL with palmitic acid-4029.95 µmol/h mg). The combination of in silico evaluation and experimental data gave similar results, demonstrating that in silico approaches are a promising alternative for reducing screening tests and minimizing laboratory time in the bio-catalysis area by identifying the lipases with the greatest reaction potential, as in the case of this proposal.


Asunto(s)
Burkholderia cepacia , Lipasa , Animales , Candida/metabolismo , Lipasa/química , Ácido Oléico , Ácidos Palmíticos , Porcinos
15.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35746224

RESUMEN

The performance of multiphase flow processes is often determined by the distribution of phases inside the equipment. However, controllers in the field are typically implemented based on flow variables, which are simpler to measure, but indirectly connected to performance (e.g., pressure). Tomography has been used in the study of the distribution of phases of multiphase flows for decades, but only recently, the temporal resolution of the technique was sufficient for real-time reconstructions of the flow. Due to the strong connection between the performance and distribution of phases, it is expected that the introduction of tomography to the real-time control of multiphase flows will lead to substantial improvements in the system performance in relation to the current controllers in the field. This paper uses a gas-liquid inline swirl separator to analyze the possibilities and limitations of tomography-based real-time control of multiphase flow processes. Experiments were performed in the separator using a wire-mesh sensor (WMS) and a high-speed camera to show that multiphase flows have two components in their dynamics: one intrinsic to its nonlinear physics, occurring independent of external process disturbances, and one due to process disturbances (e.g., changes in the flow rates of the installation). Moreover, it is shown that the intrinsic dynamics propagate from upstream to inside the separator and can be used in predictive and feedforward control strategies. In addition to the WMS experiments, a proportional-integral feedback controller based on electrical resistance tomography (ERT) was implemented in the separator, with successful results in relation to the control of the distribution of phases and impact on the performance of the process: the capture of gas was increased from 76% to 93% of the total gas with the tomography-based controller. The results obtained with the inline swirl separator are extended in the perspective of the tomography-based control of quasi-1D multiphase flows.

16.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164193

RESUMEN

L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.


Asunto(s)
Asparaginasa/química , Líquidos Iónicos/química , Dióxido de Silicio/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier
17.
Biotechnol Appl Biochem ; 68(4): 801-808, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33180374

RESUMEN

Guava seed biochar appears as a new alternative of the effective support to the immobilization of Burkholderia cepacia lipase (BCL) by physical adsorption. The objective of this work was to evaluate the potential of this immobilized biocatalyst in the transesterification reaction of crude coconut oil and ethanol and to understand the mechanism of the reaction through the study of molecular docking. The best loading of BCL was determined to be 0.15 genzyme /gsupport having a hydrolytic activity of 260 U/g and 54% immobilization yield. The products of transesterification reaction produced a maximum yield at 40 °C under different reaction conditions. The monoacylglycerols (MAGs) conversion of 59% was using substrate molar ratio oil:ethanol of 1:7 with the reaction time of 24 H. In addition, the highest ethyl esters yield (48%) had the molar ratio of 1:7 with the reaction time of 96 H and maximum conversion of diacylglycerols (DAGs) was 30% with the molar ratio of 1:6 with the reaction time of 24 H. Molecular Docking was applied to clarify the mechanisms of transesterification reaction at the molecular level. MAGs and DAGs are compounds with excellent emulsifying properties used in industrial production of several bioproducts such as cosmetic, pharmaceuticals, foods, and lubricants.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Carbón Orgánico/química , Aceite de Coco/química , Enzimas Inmovilizadas/química , Lipasa/química , Esterificación
18.
An Acad Bras Cienc ; 93(suppl 4): e20210315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34817037

RESUMEN

This study aimed to determine whether the addition of green propolis extract to the diet of laying hens would improve egg quality and bird performance and decrease bacterial contamination of eggs. Forty-five brown Hy-line laying hens were used, divided into five groups with three replicates each and three animals per cage: T0 - diet without propolis; T5 - 5 grams of propolis per kg of feed; T10 - 10 grams of propolis per kg of feed; T20 - 20 grams of propolis per kg of feed and T30 - 30 grams of propolis per kg of feed. The quality of fresh eggs was made on day 21 of the experiment, and eggs were stored for 21 days. Greater specific gravity was observed in fresh eggs in T5 birds and stored eggs for T10. TBARS in fresh eggs, we found that T30 eggs had lower levels compared to other treatments. T20 eggs had the lowest total bacterial count and the lowest total coliform count in the eggshells of T10 and T20 chickens. The count of E. coli in the peel was lower for T20 and T30 than T0 and T5. The consumption of propolis did not interfere with the hens' egg production rate but reduced food intake and consequently reduced feed conversion. We concluded that the addition of green propolis in the diet of laying birds proved efficient in reducing bacterial contamination in the eggshells and reducing the lipid peroxidation of fresh and stored eggs.


Asunto(s)
Pollos , Própolis , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Cáscara de Huevo , Escherichia coli , Femenino , Peroxidación de Lípido
19.
Bioprocess Biosyst Eng ; 44(10): 2141-2151, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34037849

RESUMEN

In the present study, we demonstrated the use of molecular docking as an efficient in silico screening tool for lipase-triglyceride interactions. Computational simulations using the crystal structures from Burkholderia cepacia lipase (BCL), Thermomyces lanuginosus lipase (TLL), and pancreatic porcine lipase (PPL) were performed to elucidate the catalytic behavior with the majority triglycerides present in Licuri oil, as follows: caprilyl-dilauryl-glycerol (CyLaLa), capryl-dilauryl-glycerol (CaLaLa), capryl-lauryl-myristoyl-glycerol (CaLaM), and dilauryl-myristoyl-glycerol (LaLaM). The computational simulation results showed that BCL has the potential to preferentially catalyze the major triglycerides present in Licuri oil, demonstrating that CyLaLa, (≈25.75% oil composition) interacts directly with two of the three amino acid residues in its catalytic triad (Ser87 and His286) with the lowest energy (-5.9 kcal/mol), while other triglycerides (CaLaLa, CaLaM, and LaLaM) interact with only one amino acid (His286). In one hard, TLL showed a preference for catalyzing the triglyceride CaLaLa also interacting with His286 residue, but, achieving higher binding energies (-5.3 kcal/mol) than found in BCL (-5.7 kcal/mol). On the other hand, PPL prefers to catalyze only with LaLaM triglyceride by His264 residue interaction. When comparing the computational simulations with the experimental results, it was possible to understand how BCL and TLL display more stable binding with the majority triglycerides present in the Licuri oil, achieving conversions of 50.86 and 49.01%, respectively. These results indicate the production of fatty acid concentrates from Licuri oil with high lauric acid content. Meanwhile, this study also demonstrates the application of molecular docking as an important tool for lipase screening to reach a more sustainable production of fatty acid concentrates from vegetable oils.


Asunto(s)
Arecaceae/química , Biología Computacional/métodos , Lipasa/metabolismo , Aceites de Plantas/química , Triglicéridos/metabolismo , Animales , Burkholderia cepacia/enzimología , Catálisis , Eurotiales/enzimología , Especificidad por Sustrato , Porcinos , Termodinámica
20.
Bioprocess Biosyst Eng ; 44(1): 57-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32767112

RESUMEN

A new design of cross-linked enzyme aggregates (CLEAs) of Burkholderia cepacia lipase (BCL) based mainly on the use of lignocellulosic residue of palm fiber as an additive was proposed. Different parameters for the preparation of active CLEAs in the hydrolysis of olive oil, such as precipitation agents, crosslinking agent concentration, additives, and coating agents were investigated. The highest activity yield (121.1 ± 0.1%) and volumetric activity (1578.1 ± 2.5 U/mL) were achieved for CLEAs prepared using the combination of a coating step with Triton® X-100 and polyethyleneimine plus the use of palm fiber as an additive. The variations of the secondary structures of BCL-CLEAs were analyzed by second-derivative infrared spectra, mainly indicating a reduction of the α-helix structure, which was responsible for the lipase activation in the supramolecular structure of the CLEAs. Thus, these results provided evidence of an innovative design of BCL-CLEAs as a sustainable and biocompatible opportunity for biotechnology applications.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Enzimas Inmovilizadas/química , Lipasa/química , Estabilidad de Enzimas , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA