Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894452

RESUMEN

BACKGROUND: Monitoring the lifestyles of older adults helps promote independent living and ensure their well-being. The common technologies for home monitoring include wearables, ambient sensors, and smart household meters. While wearables can be intrusive, ambient sensors require extra installation, and smart meters are becoming integral to smart city infrastructure. Research Gap: The previous studies primarily utilized high-resolution smart meter data by applying Non-Intrusive Appliance Load Monitoring (NIALM) techniques, leading to significant privacy concerns. Meanwhile, some Japanese power companies have successfully employed low-resolution data to monitor lifestyle patterns discreetly. SCOPE AND METHODOLOGY: This study develops a lifestyle monitoring system for older adults using low-resolution smart meter data, mapping electricity consumption to appliance usage. The power consumption data are collected at 15-min intervals, and the background power threshold distinguishes between the active and inactive periods (0/1). The system quantifies activity through an active score and assesses daily routines by comparing these scores against the long-term norms. Key Outcomes/Contributions: The findings reveal that low-resolution data can effectively monitor lifestyle patterns without compromising privacy. The active scores and regularity assessments calculated using correlation coefficients offer a comprehensive view of residents' daily activities and any deviations from the established patterns. This study contributes to the literature by validating the efficacy of low-resolution data in lifestyle monitoring systems and underscores the potential of smart meters in enhancing elderly people's care.


Asunto(s)
Vida Independiente , Estilo de Vida , Humanos , Anciano , Femenino , Masculino , Actividades Cotidianas , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/métodos , Anciano de 80 o más Años , Dispositivos Electrónicos Vestibles
2.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772776

RESUMEN

Bed is often the personal care unit in hospitals, nursing homes, and individuals' homes. Rich care-related information can be derived from the sensing data from bed. Patient fall is a significant issue in hospitals, many of which are related to getting in and/or out of bed. To prevent bed falls, a motion-sensing mattress was developed for bed-exit detection. A machine learning algorithm deployed on the chip in the control box of the mattress identified the in-bed postures based on the on/off pressure pattern of 30 sensing areas to capture the users' bed-exit intention. This study aimed to explore how sleep-related data derived from the on/off status of 30 sensing areas of this motion-sensing mattress can be used for multiple layers of precision care information, including wellbeing status on the dashboard and big data analysis for living pattern clustering. This study describes how multiple layers of personalized care-related information are further derived from the motion-sensing mattress, including real-time in-bed/off-bed status, daily records, sleep quality, prolonged pressure areas, and long-term living patterns. Twenty-four mattresses and the smart mattress care system (SMCS) were installed in a dementia nursing home in Taiwan for a field trial. Residents' on-bed/off-bed data were collected for 12 weeks from August to October 2021. The SMCS was developed to display care-related information via an integrated dashboard as well as sending reminders to caregivers when detecting events such as bed exits and changes in patients' sleep and living patterns. The ultimate goal is to support caregivers with precision care, reduce their care burden, and increase the quality of care. At the end of the field trial, we interviewed four caregivers for their subjective opinions about whether and how the SMCS helped their work. The caregivers' main responses included that the SMCS helped caregivers notice the abnormal situation for people with dementia, communicate with family members of the residents, confirm medication adjustments, and whether the standard care procedure was appropriately conducted. Future studies are suggested to focus on integrated care strategy recommendations based on users' personalized sleep-related data.


Asunto(s)
Demencia , Casas de Salud , Humanos , Hospitales , Postura , Lechos
3.
Sensors (Basel) ; 22(4)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35214561

RESUMEN

In this paper, an effective electrocardiogram (ECG) recurrence plot (RP)-based arrhythmia classification algorithm that can be implemented in portable devices is presented. Public databases from PhysioNet were used to conduct this study including the MIT-BIH Atrial Fibrillation Database, the MIT-BIH Arrhythmia Database, the MIT-BIH Malignant Ventricular Ectopy Database, and the Creighton University Ventricular Tachyarrhythmia Database. ECG time series were segmented and converted using an RP, and two-dimensional images were used as inputs to the CNN classifiers. In this study, two-stage classification is proposed to improve the accuracy. The ResNet-18 architecture was applied to detect ventricular fibrillation (VF) and noise during the first stage, whereas normal, atrial fibrillation, premature atrial contraction, and premature ventricular contractions were detected using ResNet-50 in the second stage. The method was evaluated using 5-fold cross-validation which improved the results when compared to previous studies, achieving first and second stage average accuracies of 97.21% and 98.36%, sensitivities of 96.49% and 97.92%, positive predictive values of 95.54% and 98.20%, and F1-scores of 95.96% and 98.05%, respectively. Furthermore, a 5-fold improvement in the memory requirement was achieved when compared with a previous study, making this classifier feasible for use in resource-constricted environments such as portable devices. Even though the method is successful, first stage training requires combining four different arrhythmia types into one label (other), which generates more data for the other category than for VF and noise, thus creating a data imbalance that affects the first stage performance.


Asunto(s)
Taquicardia Ventricular , Complejos Prematuros Ventriculares , Algoritmos , Electrocardiografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador , Taquicardia Ventricular/diagnóstico , Fibrilación Ventricular/diagnóstico , Complejos Prematuros Ventriculares/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA