Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(4): 1086-1102.e23, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186521

RESUMEN

Strategies for installing authentic ADP-ribosylation (ADPr) at desired positions are fundamental for creating the tools needed to explore this elusive post-translational modification (PTM) in essential cellular processes. Here, we describe a phospho-guided chemoenzymatic approach based on the Ser-ADPr writer complex for rapid, scalable preparation of a panel of pure, precisely modified peptides. Integrating this methodology with phage display technology, we have developed site-specific as well as broad-specificity antibodies to mono-ADPr. These recombinant antibodies have been selected and characterized using multiple ADP-ribosylated peptides and tested by immunoblotting and immunofluorescence for their ability to detect physiological ADPr events. Mono-ADPr proteomics and poly-to-mono comparisons at the modification site level have revealed the prevalence of mono-ADPr upon DNA damage and illustrated its dependence on PARG and ARH3. These and future tools created on our versatile chemical biology-recombinant antibody platform have broad potential to elucidate ADPr signaling pathways in health and disease.


Asunto(s)
ADP-Ribosilación , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADP-Ribosilación/efectos de los fármacos , Secuencia de Aminoácidos , Anticuerpos/metabolismo , Bencimidazoles/farmacología , Línea Celular Tumoral , Técnicas de Visualización de Superficie Celular , Daño del ADN , Glicósido Hidrolasas/metabolismo , Histonas/metabolismo , Humanos , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Tirosina/metabolismo
2.
Cell ; 167(6): 1636-1649.e13, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912065

RESUMEN

Conventional ubiquitination involves the ATP-dependent formation of amide bonds between the ubiquitin C terminus and primary amines in substrate proteins. Recently, SdeA, an effector protein of pathogenic Legionella pneumophila, was shown to mediate NAD-dependent and ATP-independent ubiquitin transfer to host proteins. Here, we identify a phosphodiesterase domain in SdeA that efficiently catalyzes phosphoribosylation of ubiquitin on a specific arginine via an ADP-ribose-ubiquitin intermediate. SdeA also catalyzes a chemically and structurally distinct type of substrate ubiquitination by conjugating phosphoribosylated ubiquitin to serine residues of protein substrates via a phosphodiester bond. Furthermore, phosphoribosylation of ubiquitin prevents activation of E1 and E2 enzymes of the conventional ubiquitination cascade, thereby impairing numerous cellular processes including mitophagy, TNF signaling, and proteasomal degradation. We propose that phosphoribosylation of ubiquitin potently modulates ubiquitin functions in mammalian cells.


Asunto(s)
Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Ubiquitinación , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas , Enzimas Reparadoras del ADN , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Enfermedad de los Legionarios/metabolismo , Proteínas de la Membrana/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirofosfatasas/metabolismo , Saccharomyces cerevisiae , Serina/metabolismo , Ubiquitina/metabolismo
3.
Mol Cell ; 83(10): 1743-1760.e11, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37116497

RESUMEN

PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.


Asunto(s)
ADP-Ribosilación , Histonas , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Cromatina , Daño del ADN , Anticuerpos/genética , Transducción de Señal
4.
Mol Cell ; 75(3): 421-425, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398322

RESUMEN

Mutation rates affect both a population's present fitness and its capacity to adapt to future environmental changes. When the available genetic variability limits adaptation to environmental change, natural selection favors high mutations rates. However, constitutively high mutation rates compromise the fitness of a population in stable environments. This problem may be resolved if an increase in mutation rates is limited to times of stress, restricted to some genomic regions, and occurs only in a subpopulation of cells. Such within-population heterogeneity of mutation rates can result from genetic, environmental, and stochastic effects. The presence of subpopulations of transient mutator cells does not jeopardize the overall fitness of a population under stable environmental conditions. However, they can increase the odds of survival in changing environments because they represent reservoirs of increased genetic variability. This article presents evidence that such heterogeneity of mutation rates is more the norm than the exception.


Asunto(s)
Adaptación Fisiológica/genética , Aptitud Genética/genética , Tasa de Mutación , Neoplasias/genética , Daño del ADN/genética , Reparación del ADN/genética , Farmacorresistencia Bacteriana/genética , Interacción Gen-Ambiente , Heterogeneidad Genética , Genética de Población , Humanos
5.
EMBO J ; 41(23): e111239, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278281

RESUMEN

Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.


Asunto(s)
Histonas , Osteogénesis , Ratones , Animales , Osteogénesis/fisiología , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Diferenciación Celular/fisiología , Mitocondrias/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Cromatina/metabolismo , Células Cultivadas
6.
Mol Cell ; 65(5): 932-940.e6, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190768

RESUMEN

ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Proteínas Portadoras/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Portadoras/genética , Línea Celular Tumoral , Inestabilidad Genómica , Humanos , Proteínas Nucleares/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Proteómica/métodos , Serina , Transfección
7.
Nucleic Acids Res ; 50(22): 12601-12620, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-35552441

RESUMEN

Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.


The ability to modulate translation capacity, which resides greatly on a number of ribosomes, provides robustness in fluctuating environments. Because translation is energetically the most expensive process in cells, cells must constantly adapt the rate of ribosome production to resource availability. This is primarily achieved by regulating ribosomal RNA (rRNA) synthesis, to which ribosomal proteins synthesis is adjusted. The multiplicity of rRNA encoding operons per bacterial genome exceeds requirements for the maximal growth rates in non-stress conditions. In this study, the authors provide evidence that a major function of rRNA operon multiplicity is to ensure that individual operons are not saturated by RNA polymerases during adaptation to environmental fluctuations, which can result in catastrophic chromosome replication failure and cell death.


Asunto(s)
Genoma Bacteriano , Operón de ARNr , Escherichia coli/metabolismo , Operón , Ribosomas/genética , Ribosomas/metabolismo , ARN Bacteriano/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Inestabilidad Genómica
8.
Annu Rev Microbiol ; 72: 209-230, 2018 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30200850

RESUMEN

By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.


Asunto(s)
Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Variación Genética/efectos de los fármacos , Adaptación Biológica , Bacterias/genética , Inestabilidad Genómica/efectos de los fármacos , Mutación , Especies Reactivas de Oxígeno/metabolismo , Recombinación Genética , Selección Genética/efectos de los fármacos , Estrés Fisiológico
9.
Mol Cell ; 59(2): 309-20, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26166706

RESUMEN

Sirtuins are an ancient family of NAD(+)-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/clasificación , Sirtuinas/clasificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Genes Bacterianos , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Lactobacillales/enzimología , Lactobacillales/genética , Lipoilación , Modelos Moleculares , Operón , Estrés Oxidativo , Filogenia , Conformación Proteica , Sirtuinas/química , Sirtuinas/genética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad
12.
Nat Methods ; 16(4): 303-306, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858599

RESUMEN

Antibiotic screens typically rely on growth inhibition to characterize compound bioactivity-an approach that cannot be used to assess the bactericidal activity of antibiotics against bacteria in drug-tolerant states. To address this limitation, we developed a multiplexed assay that uses metabolism-sensitive staining to report on the killing of antibiotic-tolerant bacteria. This method can be used with diverse bacterial species and applied to genome-scale investigations to identify therapeutic targets against tolerant pathogens.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Ciprofloxacina/farmacología , Daño del ADN , Escherichia coli/crecimiento & desarrollo , Eliminación de Gen , Etiquetado Corte-Fin in Situ , Microscopía Fluorescente , Mutación , Fenotipo , Especificidad de la Especie
13.
Crit Rev Biochem Mol Biol ; 53(1): 64-82, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29098880

RESUMEN

Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.


Asunto(s)
ADP-Ribosilación , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Animales , Daño del ADN , Humanos , Transducción de Señal
14.
Proc Natl Acad Sci U S A ; 114(43): 11512-11517, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073080

RESUMEN

The bactericidal effects of antibiotics are undoubtedly triggered by target-specific interactions, but there is growing evidence that an important aspect of cytotoxicity results from treatment-induced metabolic perturbations. In this study, we characterized molecular mechanisms whereby trimethoprim treatment results in cell death, using Escherichia coli as the model organism. E. coli cells grown in rich medium that contained all amino acids and low amounts of thymidine were treated with trimethoprim under aerobic and anaerobic conditions. Under these growth conditions, accelerated thymine depletion is the primary trigger of the processes leading to cell death. Thymine depletion-induced DNA replication stress leads to the production of reactive oxygen species under aerobic conditions and of the DNA-damaging byproducts of nitrate respiration under anaerobic conditions. Lowering the DNA replication initiation rate by introducing the dnaA(Sx) allele or by overexpressing Hda protein reduces the number of active replication forks, which reduces the consumption of thymidine and increases resistance to trimethoprim under both aerobic and anaerobic conditions. Analysis of the involvement of DNA repair enzymes in trimethoprim-induced cytotoxicity clearly indicates that different amounts and/or different types of DNA lesions are produced in the presence or absence of oxygen. Maladaptive processing of the DNA damage by DNA repair enzymes, in particular by MutM and MutY DNA glycosylases, ultimately contributes to cell death.


Asunto(s)
Antiinfecciosos Urinarios/farmacología , Reparación del ADN/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Trimetoprim/toxicidad , Aerobiosis , Anaerobiosis , Daño del ADN/efectos de los fármacos , Metilación de ADN , Replicación del ADN/efectos de los fármacos , Replicación del ADN/fisiología , ADN Bacteriano/fisiología , Desoxiguanosina , Especies Reactivas de Oxígeno , Respuesta SOS en Genética , Timidina/metabolismo
15.
Nucleic Acids Res ; 45(11): 6259-6264, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28520971

RESUMEN

Protein ADP-ribosylation (ADPr), a biologically and clinically important post-translational modification, exerts its functions by targeting a variety of different amino acids. Its repertoire recently expanded to include serine ADPr, which is emerging as an important and widespread signal in the DNA damage response. Chemically, serine ADPr (and more generally o-glycosidic ADPr) is a form of o-glycosylation, and its extreme lability renders it practically invisible to standard mass spectrometry approaches, often leading to erroneous localizations. The knowledge from the mature field of o-glycosation and our own initial difficulties with mass spectrometric analyzes of serine ADPr suggest how to avoid these misidentifications and fully explore the scope of o-glycosidic ADPr in DNA damage response and beyond.


Asunto(s)
Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Serina/química , Adenosina Difosfato Ribosa/química , Secuencia de Aminoácidos , Daño del ADN , Reacciones Falso Negativas , Glicosilación , Humanos , Análisis de Secuencia de Proteína
16.
J Cell Sci ; 129(7): 1490-9, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906413

RESUMEN

The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.


Asunto(s)
Caenorhabditis elegans/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células Musculares/metabolismo , Contracción Muscular/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
17.
Curr Genet ; 64(3): 567-569, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29181628

RESUMEN

Genotoxic agents damage DNA, block DNA replication and provoke cell death. However, there is growing evidence that an important part of their cytotoxicity results from metabolic disturbances induced by treatment. This review article describes how increased production of the reactive oxygen species (ROS) induced by different genotoxic agents contribute to death of prokaryotic and eukaryotic cells. ROS are byproducts of normal cellular functioning. Because ROS are damaging cellular macromolecules, they are constantly eliminated by protective antioxidant mechanisms. However, even a small increase in ROS production may have deleterious consequences because cells possess just enough defensive mechanisms to protect themselves against endogenously produced ROS. Therefore, it may be possible to enhance cytotoxic potential of antimicrobial and anticancer drugs by increasing ROS production or by inhibiting cellular antioxidant systems.


Asunto(s)
Antibacterianos/uso terapéutico , Antineoplásicos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Muerte Celular , Daño del ADN , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos
18.
Nat Chem Biol ; 12(12): 998-1000, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27723750

RESUMEN

ADP-ribosylation (ADPr) is a biologically and clinically important post-translational modification, but little is known about the amino acids it targets on cellular proteins. Here we present a proteomic approach for direct in vivo identification and quantification of ADPr sites on histones. We have identified 12 unique ADPr sites in human osteosarcoma cells and report serine ADPr as a new type of histone mark that responds to DNA damage.


Asunto(s)
Adenosina Difosfato/metabolismo , Histonas/química , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Línea Celular Tumoral , Daño del ADN , Humanos , Proteómica
19.
Mol Cell ; 39(4): 641-52, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20797634

RESUMEN

Reversible protein modification by small ubiquitin-like modifiers (SUMOs) is critical for eukaryotic life. Mass spectrometry-based proteomics has proven effective at identifying hundreds of potential SUMO target proteins. However, direct identification of SUMO acceptor lysines in complex samples by mass spectrometry is still very challenging. We have developed a generic method for the identification of SUMO acceptor lysines in target proteins. We have identified 103 SUMO-2 acceptor lysines in endogenous target proteins. Of these acceptor lysines, 76 are situated in the SUMOylation consensus site [VILMFPC]KxE. Interestingly, eight sites fit the inverted SUMOylation consensus motif [ED]xK[VILFP]. In addition, we found direct mass spectrometric evidence for crosstalk between SUMOylation and phosphorylation with a preferred spacer between the SUMOylated lysine and the phosphorylated serine of four residues. In 16 proteins we identified a hydrophobic cluster SUMOylation motif (HCSM). SUMO conjugation of RanGAP1 and ZBTB1 via HCSMs is remarkably efficient.


Asunto(s)
Secuencias de Aminoácidos , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Proteómica/métodos , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Espectrometría de Masas en Tándem , Transfección
20.
Mol Cell ; 37(3): 396-407, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20159558

RESUMEN

DNA polymerase eta is a Y family polymerase involved in translesion synthesis (TLS). Its action is initiated by simultaneous interaction between the PIP box in pol eta and PCNA and between the UBZ in pol eta and monoubiquitin attached to PCNA. Whereas monoubiquitination of PCNA is required for its interaction with pol eta during TLS, we now show that monoubiquitination of pol eta inhibits this interaction, preventing its functions in undamaged cells. Identification of monoubiquitination sites within pol eta nuclear localization signal (NLS) led to the discovery that pol eta NLS directly contacts PCNA, forming an extended pol eta-PCNA interaction surface. We name this the PCNA-interacting region (PIR) and show that its monoubiquitination is downregulated by various DNA-damaging agents. We propose that this mechanism ensures optimal availability of nonubiquitinated, TLS-competent pol eta after DNA damage. Our work shows how monoubiquitination can either positively or negatively regulate the assembly of a protein complex, depending on which substrates are targeted by ubiquitin.


Asunto(s)
ADN Polimerasa Dirigida por ADN/fisiología , Secuencia de Aminoácidos , Línea Celular , Daño del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Mutágenos/farmacología , Señales de Localización Nuclear , Antígeno Nuclear de Célula en Proliferación/metabolismo , Alineación de Secuencia , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA