Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroradiology ; 66(2): 217-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148334

RESUMEN

PURPOSE: The aim of this study is to assess the effect of super-resolution deep learning-based reconstruction (SR-DLR), which uses k-space properties, on image quality of intracranial time-of-flight (TOF) magnetic resonance angiography (MRA) at 3 T. METHODS: This retrospective study involved 35 patients who underwent intracranial TOF-MRA using a 3-T MRI system with SR-DLR based on k-space properties in October and November 2022. We reconstructed MRA with SR-DLR (matrix = 1008 × 1008) and MRA without SR-DLR (matrix = 336 × 336). We measured the signal-to-noise ratio (SNR), contrast, and contrast-to-noise ratio (CNR) in the basilar artery (BA) and the anterior cerebral artery (ACA) and the sharpness of the posterior cerebral artery (PCA) using the slope of the signal intensity profile curve at the half-peak points. Two radiologists evaluated image noise, artifacts, contrast, sharpness, and overall image quality of the two image types using a 4-point scale. We compared quantitative and qualitative scores between images with and without SR-DLR using the Wilcoxon signed-rank test. RESULTS: The SNRs, contrasts, and CNRs were all significantly higher in images with SR-DLR than those without SR-DLR (p < 0.001). The slope was significantly greater in images with SR-DLR than those without SR-DLR (p < 0.001). The qualitative scores in MRAs with SR-DLR were all significantly higher than MRAs without SR-DLR (p < 0.001). CONCLUSION: SR-DLR with k-space properties can offer the benefits of increased spatial resolution without the associated drawbacks of longer scan times and reduced SNR and CNR in intracranial MRA.


Asunto(s)
Aprendizaje Profundo , Angiografía por Resonancia Magnética , Humanos , Angiografía por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética , Relación Señal-Ruido , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
2.
Neuroradiology ; 65(11): 1619-1629, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673835

RESUMEN

PURPOSE: The purpose of this study is to evaluate the influence of super-resolution deep learning-based reconstruction (SR-DLR), which utilizes k-space data, on the quality of images and the quantitation of the apparent diffusion coefficient (ADC) for diffusion-weighted images (DWI) in brain magnetic resonance imaging (MRI). METHODS: A retrospective analysis was performed on 34 patients who had undergone DWI using a 3 T MRI system with SR-DLR reconstruction based on k-space data in August 2022. DWI was reconstructed with SR-DLR (Matrix = 684 × 684) and without SR-DLR (Matrix = 228 × 228). Measurements were made of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) in white matter (WM) and grey matter (GM), and the full width at half maximum (FWHM) of the septum pellucidum. Two radiologists assessed image noise, contrast, artifacts, blur, and the overall quality of three image types using a four-point scale. Quantitative and qualitative scores between images with and without SR-DLR were compared using the Wilcoxon signed-rank test. RESULTS: Images with SR-DLR showed significantly higher SNRs and CNRs than those without SR-DLR (p < 0.001). No statistically significant variances were found in the apparent diffusion coefficients (ADCs) in WM and GM between images with and without SR-DLR (ADC in WM, p = 0.945; ADC in GM, p = 0.235). Moreover, the FWHM without SR-DLR was notably lower compared to that with SR-DLR (p < 0.001). CONCLUSION: SR-DLR has the potential to augment the quality of DWI in DL MRI scans without significantly impacting ADC quantitation.

3.
Eur J Radiol ; 178: 111587, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002269

RESUMEN

OBJECTIVES: This study aims to assess the effectiveness of super-resolution deep-learning-based reconstruction (SR-DLR), which leverages k-space data, on the image quality of lumbar spine magnetic resonance (MR) bone imaging using a 3D multi-echo in-phase sequence. MATERIALS AND METHODS: In this retrospective study, 29 patients who underwent lumbar spine MRI, including an MR bone imaging sequence between January and April 2023, were analyzed. Images were reconstructed with and without SR-DLR (Matrix sizes: 960 × 960 and 320 × 320, respectively). The signal-to-noise ratio (SNR) of the vertebral body and spinal canal and the contrast and contrast-to-noise ratio (CNR) between the vertebral body and spinal canal were quantitatively evaluated. Furthermore, the slope at half-peak points of the profile curve drawn across the posterior border of the vertebral body was calculated. Two radiologists independently assessed image noise, contrast, artifacts, sharpness, and overall image quality of both image types using a 4-point scale. Interobserver agreement was evaluated using weighted kappa coefficients, and quantitative and qualitative scores were compared via the Wilcoxon signed-rank test. RESULTS: SNRs of the vertebral body and spinal canal were notably improved in images with SR-DLR (p < 0.001). Contrast and CNR were significantly enhanced with SR-DLR compared to those without SR-DLR (p = 0.023 and p = 0.022, respectively). The slope of the profile curve at half-peak points across the posterior border of the vertebral body and spinal canal was markedly higher with SR-DLR (p < 0.001). Qualitative scores (noise: p < 0.001, contrast: p < 0.001, artifact p = 0.042, sharpness: p < 0.001, overall image quality: p < 0.001) were superior in images with SR-DLR compared to those without. Kappa analysis indicated moderate to good agreement (noise: κ = 0.56, contrast: κ = 0.51, artifact: κ = 0.46, sharpness: κ = 0.76, overall image quality: κ = 0.44). CONCLUSION: SR-DLR, which is based on k-space data, has the potential to enhance the image quality of lumbar spine MR bone imaging utilizing a 3D gradient echo in-phase sequence. CLINICAL RELEVANCE STATEMENT: The application of SR-DLR can lead to improvements in lumbar spine MR bone imaging quality.


Asunto(s)
Aprendizaje Profundo , Vértebras Lumbares , Imagen por Resonancia Magnética , Humanos , Femenino , Vértebras Lumbares/diagnóstico por imagen , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Anciano , Adulto , Relación Señal-Ruido , Imagenología Tridimensional/métodos , Anciano de 80 o más Años , Enfermedades de la Columna Vertebral/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA