RESUMEN
AIMS/HYPOTHESIS: Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes. Here, we investigated the effects of SeP on VEGF signalling and angiogenesis. METHODS: We assessed the action of glucose on Sepp1 expression in cultured hepatocytes. We examined the actions of SeP on VEGF signalling and VEGF-induced angiogenesis in HUVECs. We assessed wound healing in mice with hepatic SeP overexpression or SeP deletion. The blood flow recovery after ischaemia was also examined by using hindlimb ischaemia model with Sepp1-heterozygous-knockout mice. RESULTS: Treatment with glucose increased gene expression and transcriptional activity for Sepp1 in H4IIEC hepatocytes. Physiological concentrations of SeP inhibited VEGF-stimulated cell proliferation, tubule formation and migration in HUVECs. SeP suppressed VEGF-induced reactive oxygen species (ROS) generation and phosphorylation of VEGF receptor 2 (VEGFR2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs. Wound closure was impaired in the mice overexpressing Sepp1, whereas it was improved in SeP (-/-)mice. SeP (+/-)mice showed an increase in blood flow recovery and vascular endothelial cells after hindlimb ischaemia. CONCLUSIONS/INTERPRETATION: The hepatokine SeP may be a novel therapeutic target for impaired angiogenesis in type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Selenoproteína P/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Ratones , Ratones Noqueados , Ratones Mutantes , Regiones Promotoras Genéticas/genética , Selenoproteína P/genética , Factor A de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiologíaRESUMEN
Recent studies have correlated metabolic diseases, such as metabolic syndrome and non-alcoholic fatty liver disease, with the circadian clock. However, whether such metabolic changes per se affect the circadian clock remains controversial. To address this, we investigated the daily mRNA expression profiles of clock genes in the liver of a dietary mouse model of non-alcoholic steatohepatitis (NASH) using a custom-made, high-precision DNA chip. C57BL/6J mice fed an atherogenic diet for 5 weeks developed hypercholesterolemia, oxidative stress, and NASH. DNA chip analyses revealed that the atherogenic diet had a great influence on the mRNA expression of a wide range of genes linked to mitochondrial energy production, redox regulation, and carbohydrate and lipid metabolism. However, the rhythmic mRNA expression of the clock genes in the liver remained intact. Most of the circadianly expressed genes also showed 24-h rhythmicity. These findings suggest that the biological clock is protected against such a metabolic derangement as NASH.
Asunto(s)
Relojes Biológicos , Ritmo Circadiano , Hígado Graso/fisiopatología , Hígado/fisiopatología , Animales , Relojes Biológicos/genética , Ritmo Circadiano/genética , Dieta Aterogénica , Modelos Animales de Enfermedad , Hígado Graso/genética , Perfilación de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de OligonucleótidosRESUMEN
UNLABELLED: Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease and is one of the most common liver diseases in the developed world. The histological findings of NASH are characterized by hepatic steatosis, inflammation, and fibrosis. However, an optimal treatment for NASH has not been established. Tranilast, N-(3',4'-dimethoxycinnamoyl)-anthranilic acid, is an antifibrogenic agent that inhibits the action of transforming growth factor beta (TGF-beta). This drug is used clinically for fibrogenesis-associated skin disorders including hypertrophic scars and scleroderma. TGF-beta plays a central role in the development of hepatic fibrosis, and tranilast may thus ameliorate the pathogenesis of NASH. We investigated the effects of tranilast using an established dietary animal model of NASH, obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and nondiabetic control Long-Evans Tokushima Otsuka (LETO) rats fed a methionine-deficient and choline-deficient diet. Treatment with 2% tranilast (420 mg/kg/day) for 8 weeks prevented the development of hepatic fibrosis and the activation of stellate cells, and down-regulated the expression of genes for TGF-beta and TGF-beta-target molecules, including alpha1 procollagen and plasminogen activator-1. In addition, tranilast attenuated hepatic inflammation and Kupffer cell recruitment, and down-regulated the expression of tumor necrosis factor alpha. Unexpectedly, tranilast ameliorated hepatic steatosis and up-regulated the expression of genes involved in beta-oxidation, such as peroxisome proliferator-activated receptor alpha and carnitine O-palmitoyltransferase-1. Most of these effects were observed in LETO rats and OLETF rats, which suggest that the action of tranilast is mediated through the insulin resistance-independent pathway. CONCLUSION: Our findings suggest that targeting TGF-beta with tranilast represents a new mode of therapy for NASH.
Asunto(s)
Dieta , Hígado Graso/etiología , Hígado Graso/patología , Cirrosis Hepática/prevención & control , ortoaminobenzoatos/farmacología , Animales , Carnitina O-Palmitoiltransferasa/genética , Línea Celular , Deficiencia de Colina , Ácidos Grasos/metabolismo , Hígado Graso/complicaciones , Hígado Graso/metabolismo , Interleucina-6/antagonistas & inhibidores , Interleucina-6/biosíntesis , Macrófagos del Hígado/patología , Lipopolisacáridos/farmacología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Macrófagos/metabolismo , Masculino , Metionina/deficiencia , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas OLETF , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/biosíntesis , Regulación hacia ArribaRESUMEN
Tumor necrosis factor (TNF)-alpha and local activation of the renin-angiotensin system may contribute to insulin resistance and atherosclerosis. In this study, we investigated the involvement of these mediators in the liver. We found that the gene expression of renin-angiotensin system components, together with that of plasminogen activator inhibitor (PAI)-1, is upregulated in the liver of patients with obesity and type 2 diabetes. We next examined the role of the renin-angiotensin system on TNF-alpha-induced PAI-1 production in the nonmalignant human hepatocyte cell line THLE-5b. THLE-5b cells expressed genes encoding renin-angiotensin system components including angiotensinogen, angiotensin-converting enzyme (ACE), and angiotensin type 1 (AT(1)) receptor. ACE, angiotensinogen, and angiotensin AT(1) receptor mRNA expression were upregulated time-dependently by TNF-alpha. Moreover, angiotensin AT(1) receptor antagonist dose-dependently inhibited TNF-alpha-induced PAI-1 production. Interestingly, high-dose olmesartan, but not candesartan, reduced the increased expression of the angiotensin AT(1) receptor. These results suggest that TNF-alpha and the local renin-angiotensin system coordinately stimulate PAI-1 production in hepatocytes. Selective angiotensin AT(1) receptor antagonists inhibit both TNF-alpha- and angiotensin II-induced PAI-1 production in hepatocytes, suggesting a cross talk between both systems.
Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Obesidad/complicaciones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Sistema Renina-Angiotensina/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Hígado/patología , Masculino , Persona de Mediana Edad , Inhibidor 1 de Activador Plasminogénico/genética , Transducción de Señal , Factores de TiempoRESUMEN
Insulin resistance is a major pathological condition associated with obesity and metabolic syndrome. Insulin resistance and the renin-angiotensin system are intimately linked. We evaluated the role of the renin-angiotensin system in the pathogenesis of insulin resistance-associated, non-alcoholic steatohepatitis by using the angiotensin II type 1 receptor blocker olmesartan medoxomil in a diabetic rat model. The effects of olmesartan on methionine- and choline-deficient (MCD) diet-induced steatohepatitis were investigated in obese, diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and control Long-Evans Tokushima Otsuka (LETO) rats. Components of the renin-angiotensin system were up-regulated in the livers of OLETF rats, compared with LETO rats. In OLETF, but not LETO, rats, oral administration of olmesartan for 8 weeks ameliorated insulin resistance. Moreover, olmesartan suppressed MCD diet-induced hepatic steatosis and the hepatic expression of lipogenic genes (sterol regulatory element-binding protein-1c and fatty acid synthase) in OLETF, but not LETO, rats. In both OLETF and LETO rats, olmesartan inhibited hepatic oxidative stress (4-hydroxy-2-nonenal-modified protein) and expression of NADPH oxidase. Olmesartan also inhibited hepatic fibrosis, stellate cell activation, and expression of fibrogenic genes (transforming growth factor-beta, alpha 1 [I] procollagen, plasminogen activator inhibitor-1) in both OLETF and LETO rats. In conclusion, pharmacological blockade of the angiotensin II type 1 receptor slows the development of steatohepatitis in the OLETF rat model. This angiotensin II type 1 receptor blocker may exert insulin resistance-associated effects against hepatic steatosis and inflammation as well as direct effects against the generation of reactive oxygen species and fibrogenesis.
Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Hígado Graso/tratamiento farmacológico , Imidazoles/uso terapéutico , Tetrazoles/uso terapéutico , Animales , Deficiencia de Colina/complicaciones , Modelos Animales de Enfermedad , Ácidos Grasos/biosíntesis , Imidazoles/farmacología , Resistencia a la Insulina , Cirrosis Hepática Experimental/prevención & control , Masculino , Metionina/deficiencia , Estrés Oxidativo , ARN Mensajero/análisis , Ratas , Ratas Long-Evans , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Tetrazoles/farmacología , Factor de Crecimiento Transformador beta/genética , Factor de Necrosis Tumoral alfa/sangreRESUMEN
Conscious young adult male rats were given total parenteral nutrition (TPN) with or without soybean fat for 4 days. Those given fat-free TPN developed severe fatty liver, with hyperglycaemia, hyperinsulinaemia, and hypotriglyceridaemia. These disorders were clearly improved by supplementing TPN with soybean fat, in an amount equivalent to 20% of total calories, and correspondingly reducing glucose. Insulin resistance also developed over a 4-day infusion of fat-free TPN in mature rats. Even after over-night fasting after stopping the TPN infusion, the levels of serum glucose and insulin were higher in the fat-free TPN group than in the control group, and intravenous glucose tolerance test results indicated insulin resistance in the fat-free TPN group. The HOMA-IR index of insulin resistance was significantly improved by supplementation with soybean fat. In conclusion, fat-free TPN infusion induced hyperglycaemia and hyperinsulinaemia, leading to fatty liver and insulin resistance. TPN with glucose should be supplemented with soybean fat emulsion as replacement for part of the glucose calories.
Asunto(s)
Dieta con Restricción de Grasas/efectos adversos , Suplementos Dietéticos , Emulsiones Grasas Intravenosas/administración & dosificación , Resistencia a la Insulina , Nutrición Parenteral Total/efectos adversos , Aceite de Soja/administración & dosificación , Animales , Glucemia/metabolismo , Emulsiones Grasas Intravenosas/farmacología , Emulsiones Grasas Intravenosas/uso terapéutico , Hígado Graso/etiología , Hígado Graso/prevención & control , Prueba de Tolerancia a la Glucosa , Hiperglucemia/etiología , Hiperglucemia/prevención & control , Hiperinsulinismo/etiología , Hiperinsulinismo/prevención & control , Insulina/sangre , Masculino , Ratas , Ratas Sprague-Dawley , Aceite de Soja/farmacología , Aceite de Soja/uso terapéutico , Triglicéridos/sangreRESUMEN
Oral supplementation with branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in patients with liver cirrhosis potentially suppresses the incidence of hepatocellular carcinoma (HCC) and improves event-free survival. However, the detailed mechanisms of BCAA action have not been fully elucidated. BCAA were administered to atherogenic and high-fat (Ath+HF) diet-induced nonalcoholic steatohepatitis (NASH) model mice. Liver histology, tumor incidence, and gene expression profiles were evaluated. Ath+HF diet mice developed hepatic tumors at a high frequency at 68 weeks. BCAA supplementation significantly improved hepatic steatosis, inflammation, fibrosis, and tumors in Ath+HF mice at 68 weeks. GeneChip analysis demonstrated the significant resolution of pro-fibrotic gene expression by BCAA supplementation. The anti-fibrotic effect of BCAA was confirmed further using platelet-derived growth factor C transgenic mice, which develop hepatic fibrosis and tumors. In vitro, BCAA restored the transforming growth factor (TGF)-ß1-stimulated expression of pro-fibrotic genes in hepatic stellate cells (HSC). In hepatocytes, BCAA restored TGF-ß1-induced apoptosis, lipogenesis, and Wnt/ß-Catenin signaling, and inhibited the transformation of WB-F344 rat liver epithelial stem-like cells. BCAA repressed the promoter activity of TGFß1R1 by inhibiting the expression of the transcription factor NFY and histone acetyltransferase p300. Interestingly, the inhibitory effect of BCAA on TGF-ß1 signaling was mTORC1 activity-dependent, suggesting the presence of negative feedback regulation from mTORC1 to TGF-ß1 signaling. Thus, BCAA induce an anti-fibrotic effect in HSC, prevent apoptosis in hepatocytes, and decrease the incidence of HCC; therefore, BCAA supplementation would be beneficial for patients with advanced liver fibrosis with a high risk of HCC.
Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Carcinoma Hepatocelular/prevención & control , Enfermedades Genéticas Congénitas/prevención & control , Cirrosis Hepática/prevención & control , Neoplasias Hepáticas/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Enfermedades Genéticas Congénitas/patología , Humanos , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance.
Asunto(s)
Resistencia a la Insulina/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Animales , Glucosa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Hígado/efectos de los fármacos , Ratones , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Obesidad/genética , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH. CONCLUSIONS/SIGNIFICANCE: These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.
Asunto(s)
Hígado Graso/tratamiento farmacológico , Hepatitis/tratamiento farmacológico , Metformina/uso terapéutico , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Hígado Graso/patología , Hígado Graso/prevención & control , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatitis/patología , Hepatitis/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Metformina/administración & dosificación , Ratones , Ratones Endogámicos NOD , Enfermedad del Hígado Graso no Alcohólico , Inhibidor 1 de Activador Plasminogénico/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes.
Asunto(s)
Resistencia a la Insulina , Hígado/metabolismo , Selenoproteína P/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Palmítico/metabolismo , Fosforilación , Interferencia de ARN , ARN Mensajero/genética , Ratas , Selenoproteína P/genéticaRESUMEN
Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux into the liver via the portal vein and may cause fatty liver disease and hepatic insulin resistance. However, because animal models of insulin resistance induced by lipid infusion or a high fat diet are complex and may be accompanied by alterations not restricted to the liver, it is difficult to determine the contribution of FFAs to hepatic insulin resistance. Therefore, we treated H4IIEC3 cells, a rat hepatocyte cell line, with a monounsaturated fatty acid (oleate) and a saturated fatty acid (palmitate) to investigate the direct and initial effects of FFAs on hepatocytes. We show that palmitate, but not oleate, inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 2 and serine phosphorylation of Akt, through c-Jun NH(2)-terminal kinase (JNK) activation. Among the well established stimuli for JNK activation, reactive oxygen species (ROS) played a causal role in palmitate-induced JNK activation. In addition, etomoxir, an inhibitor of carnitine palmitoyltransferase-1, which is the rate-limiting enzyme in mitochondrial fatty acid beta-oxidation, as well as inhibitors of the mitochondrial respiratory chain complex (thenoyltrifluoroacetone and carbonyl cyanide m-chlorophenylhydrazone) decreased palmitate-induced ROS production. Together, our findings in hepatocytes indicate that palmitate inhibited insulin signal transduction through JNK activation and that accelerated beta-oxidation of palmitate caused excess electron flux in the mitochondrial respiratory chain, resulting in increased ROS generation. Thus, mitochondria-derived ROS induced by palmitate may be major contributors to JNK activation and cellular insulin resistance.
Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Resistencia a la Insulina , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Palmitatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Línea Celular Tumoral , Transporte de Electrón/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Hepatocitos/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitocondrias/enzimología , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismoRESUMEN
Obesity is a major cause of insulin resistance and contributes to the development of type 2 diabetes. The altered expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) has been regarded as a key change in insulin-sensitive organs of patients with type 2 diabetes. This study explores possible molecular signatures of obesity and examines the clinical significance of OXPHOS gene expression in the livers of patients with type 2 diabetes. We analyzed gene expression in the livers of 21 patients with type 2 diabetes (10 obese and 11 nonobese patients; age, 53.0 +/- 2.1 years; BMI, 24.4 +/- 0.9 kg/m(2); fasting plasma glucose, 143.0 +/- 10.6 mg/dl) using a DNA chip. We screened 535 human pathways and extracted those metabolic pathways significantly altered by obesity. Genes involved in the OXPHOS pathway, together with glucose and lipid metabolism pathways, were coordinately upregulated in the liver in association with obesity. The mean centroid of OXPHOS gene expression was significantly correlated with insulin resistance indices and the hepatic expression of genes involved in gluconeogenesis, reactive oxygen species (ROS) generation, and transcriptional factors and nuclear co-activators associated with energy homeostasis. In conclusion, obesity may affect the pathophysiology of type 2 diabetes by upregulating genes involved in OXPHOS in association with insulin resistance markers and the expression of genes involved in hepatic gluconeogenesis and ROS generation.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Obesidad/genética , Fosforilación Oxidativa , Alanina Transaminasa/metabolismo , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Hígado Graso , Femenino , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Homeostasis , Humanos , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Regulación hacia ArribaRESUMEN
Insulin resistance is a key pathophysiological feature of metabolic syndrome. However, the initial events triggering the development of insulin resistance and its causal relations with dysregulation of glucose and fatty acids metabolism remain unclear. We investigated biological pathways that have the potential to induce insulin resistance in mice fed a high-fat diet (HFD). We demonstrate that the pathways for reactive oxygen species (ROS) production and oxidative stress are coordinately up-regulated in both the liver and adipose tissue of mice fed an HFD before the onset of insulin resistance through discrete mechanism. In the liver, an HFD up-regulated genes involved in sterol regulatory element binding protein 1c-related fatty acid synthesis and peroxisome proliferator-activated receptor alpha-related fatty acid oxidation. In the adipose tissue, however, the HFD down-regulated genes involved in fatty acid synthesis and up-regulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Furthermore, increased ROS production preceded the elevation of tumor necrosis factor-alpha and free fatty acids in the plasma and liver. The ROS may be an initial key event triggering HFD-induced insulin resistance.
Asunto(s)
Grasas de la Dieta/administración & dosificación , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia ArribaRESUMEN
We hypothesized that systemically circulating peripheral blood mononuclear cells (PBMCs) reflect the pathophysiology of type 2 diabetes. PBMCs were obtained from 18 patients with type 2 diabetes and 16 non-diabetic subjects. The expression of genes in the PBMCs was analyzed by using a DNA chip followed by statistical analysis for specific gene sets for biological categories. The only gene set coordinately up-regulated by the existence of diabetes and down-regulated by glycemic control consisted of 48 genes involved in the c-Jun N-terminal kinase (JNK) pathway. In contrast, the only gene set coordinately down-regulated by the existence of diabetes, but not altered by glycemic control consisted of 92 genes involved in the mitochondrial oxidative phosphorylation (OXPHOS) pathway. Our findings suggest that genes involved in the JNK and OXPHOS pathways of PBMCs may be surrogate transcriptional markers for hyperglycemia-induced oxidative stress and morbidity of type 2 diabetes, respectively.