Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Physiol ; 194(1): 296-313, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37590952

RESUMEN

Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked ß-1→3/ß-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , beta-Glucanos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxidorreductasas/metabolismo , beta-Glucanos/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo , Semillas/metabolismo , Pared Celular/metabolismo , Mucílago de Planta/metabolismo
2.
Mol Plant Microbe Interact ; 35(10): 881-886, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35704684

RESUMEN

Oligogalacturonide (OG)-oxidase 1 (OGOX1) and cellodextrin (CD)-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide oxidases that oxidize OGs and CDs, cell-wall fragments with the nature of damage-associated molecular patterns. The oxidation of OGs and CDs attenuates their elicitor activity and concomitantly releases H2O2. By using a multiple enzyme-based assay, we demonstrate that the H2O2 generated downstream of the combined action between a fungal polygalacturonase and OGOX1 or an endoglucanase and CELLOX can be directed by plant peroxidases (PODs) either towards a reaction possibly involved in plant defense, such as the oxidation of monolignol or a reaction possibly involved in a developmental event, such as the oxidation of auxin (indole-3-acetic acid), pointing to OGOX1 and CELLOX as enzymatic transducers between microbial glycoside hydrolases and plant PODs. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Celulasa , Oxidorreductasas , Glicósido Hidrolasas , Peróxido de Hidrógeno , Ácidos Indolacéticos , Oligosacáridos , Oxidorreductasas N-Desmetilantes , Peroxidasas , Plantas , Poligalacturonasa , Transductores
3.
Plant Cell Environ ; 44(9): 3078-3093, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34050546

RESUMEN

Early signalling events in response to elicitation include reversible protein phosphorylation and re-localization of plasma membrane (PM) proteins. Oligogalacturonides (OGs) are a class of damage-associated molecular patterns (DAMPs) that act as endogenous signals to activate the plant immune response. Previous data on early phosphoproteome changes in Arabidopsis thaliana upon OG perception uncovered the immune-related phospho-regulation of several membrane proteins, among which PCaP1, a PM-anchored protein with actin filament-severing activity, was chosen for its potential involvement in OG- and flagellin-triggered responses. Here, we demonstrate that PCaP1 is required for late, but not early, responses induced by OGs and flagellin. Moreover, pcap1 mutants, unlike the wild type, are impaired in the recovery of full responsiveness to a second treatment with OGs performed 24 h after the first one. Localization studies on PCaP1 upon OG treatment in plants expressing a functional PCaP1-GFP fusion under the control of PCaP1 promoter revealed fluorescence on the PM, organized in densely packed punctate structures, previously reported as microdomains. Fluorescence was found to be associated also with endocytic vesicles, the number of which rapidly increased after OG treatment, suggesting both an endocytic turnover of PCaP1 for maintaining its homeostasis at the PM and an OG-induced endocytosis.


Asunto(s)
Alarminas/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Proteínas de Unión al Calcio/fisiología , Membrana Celular/metabolismo , Flagelina/metabolismo , Polinucleótidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Botrytis , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Microscopía Confocal , Fosfoproteínas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma
4.
Plant J ; 97(1): 134-147, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30548980

RESUMEN

The architecture of the plant cell wall is highly dynamic, being substantially re-modeled during growth and development. Cell walls determine the size and shape of cells and contribute to the functional specialization of tissues and organs. Beyond the physiological dynamics, the wall structure undergoes changes upon biotic or abiotic stresses. In this review several cell wall traits, mainly related to pectin, one of the major matrix components, will be discussed in relation to plant development, immunity and industrial bioconversion of biomass, especially for energy production. Plant cell walls are a source of oligosaccharide fragments with a signaling function for both development and immunity. Sensing cell wall damage, sometimes through the perception of released damage-associated molecular patterns (DAMPs), is crucial for some developmental and immunity responses. Methodological advances that are expected to deepen our knowledge of cell wall (CW) biology will also be presented.


Asunto(s)
Pared Celular/metabolismo , Inmunidad de la Planta , Plantas/genética , Transducción de Señal , Membrana Celular/metabolismo , Pectinas/metabolismo , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas/inmunología , Plantas/metabolismo , Estrés Fisiológico
5.
Plant J ; 98(3): 540-554, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30664296

RESUMEN

The plant cell wall is the barrier that pathogens must overcome to cause a disease, and to this end they secrete enzymes that degrade the various cell wall components. Due to the complexity of these components, several types of oligosaccharide fragments may be released during pathogenesis and some of these can act as damage-associated molecular patterns (DAMPs). Well-known DAMPs are the oligogalacturonides (OGs) released upon degradation of homogalacturonan and the products of cellulose breakdown, i.e. the cellodextrins (CDs). We have previously reported that four Arabidopsis berberine bridge enzyme-like (BBE-like) proteins (OGOX1-4) oxidize OGs and impair their elicitor activity. We show here that another Arabidopsis BBE-like protein, which is expressed coordinately with OGOX1 during immunity, specifically oxidizes CDs with a preference for cellotriose (CD3) and longer fragments (CD4-CD6). Oxidized CDs show a negligible elicitor activity and are less easily utilized as a carbon source by the fungus Botrytis cinerea. The enzyme, named CELLOX (cellodextrin oxidase), is encoded by the gene At4 g20860. Plants overexpressing CELLOX display an enhanced resistance to B. cinerea, probably because oxidized CDs are a less valuable carbon source. Thus, the capacity to oxidize and impair the biological activity of cell wall-derived oligosaccharides seems to be a general trait of the family of BBE-like proteins, which may serve to homeostatically control the level of DAMPs to prevent their hyperaccumulation.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Celulosa/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Botrytis/patogenicidad , Pared Celular/inmunología , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología
6.
Plant Biotechnol J ; 18(5): 1185-1199, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31646753

RESUMEN

Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE ß-CYCLASE (LCYb) resulted in increased ß-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased ß-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of ß-carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.


Asunto(s)
Solanum lycopersicum , Ácido Abscísico , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno
7.
J Minim Invasive Gynecol ; 27(4): 813-814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31386912

RESUMEN

OBJECTIVE: Excisional techniques used to surgically treat deep infiltrating endometriosis (DIE) can result in inadvertent damage to the autonomic nervous system of the pelvis, leading to urinary, anorectal, and sexual dysfunction [1-4]. This educational video illustrates the autonomic neuroanatomy of the pelvis, identifying the predictable location of the hypogastric nerve in relation to other pelvic landmarks, and demonstrates a surgical technique for sparing the hypogastric nerve and inferior hypogastric plexus. DESIGN: Using didactic schematics and medical drawings, we discuss and illustrate the autonomic neuroanatomy of the pelvis. With annotated laparoscopic footage, we demonstrate a stepwise approach for identifying, dissecting, and preserving the hypogastric nerve during pelvic surgery. SETTING: Tertiary care academic hospitals: Mount Sinai Hospital in Toronto, Ontario, Canada, and S. Orsola Hospital in Bologna, Italy. INTERVENTIONS: Radical excision of DIE with adequate identification and sparing of the hypogastric nerve and inferior hypogastric plexus bilaterally was performed, following an overview of pelvic neuroanatomy. The superior hypogastric plexus was described and the hypogastric nerve, the most superficial and readily identifiable component of the inferior hypogastric plexus, was identified and used as a landmark to preserve autonomic bundles in the pelvis. The following steps, illustrated with laparoscopic footage, describe a surgical technique developed to identify and preserve the hypogastric nerve and the deeper inferior hypogastric plexus without the need for more extensive pelvic dissection to the level of the sacral nerve roots: (1) transperitoneal identification of the hypogastric nerve, with a pulling maneuver for confirmation; (2) opening of the retroperitoneum at the level of the pelvic brim and retroperitoneal identification of the ureter; (3) medial dissection and identification of the hypogastric nerve; and (4) lateralization of the hypogastric nerve, allowing for safe resection of DIE. CONCLUSION: The hypogastric nerve follows a predictable course and can be identified, dissected, and spared during pelvic surgery, making it an important landmark for the preservation of pelvic autonomic innervation.


Asunto(s)
Endometriosis/cirugía , Procedimientos Quirúrgicos Ginecológicos/métodos , Plexo Hipogástrico/cirugía , Enfermedades Intestinales/cirugía , Laparoscopía/métodos , Enfermedades Peritoneales/cirugía , Disección/educación , Disección/métodos , Endometriosis/patología , Femenino , Procedimientos Quirúrgicos Ginecológicos/educación , Humanos , Plexo Hipogástrico/diagnóstico por imagen , Plexo Hipogástrico/patología , Enfermedades Intestinales/patología , Italia , Laparoscopía/educación , Ontario , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/patología , Órganos en Riesgo/cirugía , Pelvis/diagnóstico por imagen , Pelvis/inervación , Pelvis/patología , Pelvis/cirugía , Enfermedades Peritoneales/patología
8.
Plant J ; 94(2): 260-273, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29396998

RESUMEN

Recognition of endogenous molecules acting as 'damage-associated molecular patterns' (DAMPs) is a key feature of immunity in both animals and plants. Oligogalacturonides (OGs), i.e. fragments derived from the hydrolysis of homogalacturonan, a major component of pectin are a well known class of DAMPs that activate immunity and protect plants against several microbes. However, hyper-accumulation of OGs severely affects growth, eventually leading to cell death and clearly pointing to OGs as players in the growth-defence trade-off. Here we report a mechanism that may control the homeostasis of OGs avoiding their deleterious hyper-accumulation. By combining affinity chromatography on acrylamide-trapped OGs and other procedures, an Arabidopsis thaliana enzyme that specifically oxidizes OGs was purified and identified. The enzyme was named OG OXIDASE 1 (OGOX1) and shown to be encoded by the gene At4g20830. As a typical flavo-protein, OGOX1 is a sulphite-sensitive H2 O2 -producing enzyme that displays maximal activity on OGs with a degree of polymerization >4. OGOX1 belongs to a large gene family of mainly apoplastic putative FAD-binding proteins [Berberine Bridge Enzyme-like (BBE-like); 27 members], whose biochemical and biological function is largely unexplored. We have found that at least four BBE-like enzymes in Arabidopsis are OG oxidases (OGOX1-4). Oxidized OGs display a reduced capability of activating the immune responses and are less hydrolysable by fungal polygalacturonases. Plants overexpressing OGOX1 are more resistant to Botrytis cinerea, pointing to a crucial role of OGOX enzymes in plant immunity.


Asunto(s)
Alarminas/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxidorreductasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Berberina/metabolismo , Inmunidad de la Planta
9.
Ann Bot ; 124(6): 1067-1089, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31190078

RESUMEN

BACKGROUND AND AIMS: Cell wall disassembly occurs naturally in plants by the action of several glycosyl-hydrolases during different developmental processes such as lysigenous and constitutive aerenchyma formation in sugarcane roots. Wall degradation has been reported in aerenchyma development in different species, but little is known about the action of glycosyl-hydrolases in this process. METHODS: In this work, gene expression, protein levels and enzymatic activity of cell wall hydrolases were assessed. Since aerenchyma formation is constitutive in sugarcane roots, they were assessed in segments corresponding to the first 5 cm from the root tip where aerenchyma develops. KEY RESULTS: Our results indicate that the wall degradation starts with a partial attack on pectins (by acetyl esterases, endopolygalacturonases, ß-galactosidases and α-arabinofuranosidases) followed by the action of ß-glucan-/callose-hydrolysing enzymes. At the same time, there are modifications in arabinoxylan (by α-arabinofuranosidases), xyloglucan (by XTH), xyloglucan-cellulose interactions (by expansins) and partial hydrolysis of cellulose. Saccharification revealed that access to the cell wall varies among segments, consistent with an increase in recalcitrance and composite formation during aerenchyma development. CONCLUSION: Our findings corroborate the hypothesis that hydrolases are synchronically synthesized, leading to cell wall modifications that are modulated by the fine structure of cell wall polymers during aerenchyma formation in the cortex of sugarcane roots.


Asunto(s)
Saccharum , Pared Celular , Hidrolasas , Meristema , Raíces de Plantas
10.
J Proteome Res ; 12(11): 4685-701, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24032454

RESUMEN

The development of plant root systems is characterized by a high plasticity, made possible by the continual propagation of new meristems. Root architecture is fundamental for overall plant growth, abiotic stress resistance, nutrient uptake, and response to environmental changes. Understanding the function of genes and proteins that control root architecture and stress resistance will contribute to the development of more sustainable systems of intensified crop production. To meet these challenges, proteomics provide the genome-wide scale characterization of protein expression pattern, subcellular localization, post-translational modifications, activity regulation, and molecular interactions. In this review, we describe a variety of proteomic strategies that have been applied to study the proteome of the whole organ and of specific cell types during root development. Each has advantages and limitations, but collectively they are providing important insights into the mechanisms by which auxin structures and patterns the root system and into the interplay between signaling networks, auxin transport and growth. The acquisition of proteomic, transcriptomic, and metabolomic data sets of the root apex on the cell scale has revealed the high spatial complexity of regulatory networks and fosters the use of new powerful proteomic tools for a full understanding of the control of root developmental processes and environmental responses.


Asunto(s)
Arabidopsis/genética , Biomarcadores/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteómica/métodos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Cromatografía Liquida , Perfilación de la Expresión Génica , Ácidos Indolacéticos/química , Estructura Molecular , Raíces de Plantas/metabolismo , Espectrometría de Masas en Tándem
11.
Sci Rep ; 13(1): 4123, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914850

RESUMEN

Oligogalacturonide-oxidases (OGOXs) and cellodextrin-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide-oxidases (OSOXs) that oxidize, respectively, oligogalacturonides (OGs) and cellodextrins (CDs), thereby inactivating their elicitor nature and concomitantly releasing H2O2. Little is known about the physiological role of OSOX activity. By using an ABTS·+-reduction assay, we identified a novel reaction mechanism through which the activity of OSOXs on cell wall oligosaccharides scavenged the radical cation ABTS·+ with an efficiency dependent on the type and length of the oxidized oligosaccharide. In contrast to the oxidation of longer oligomers such as OGs (degree of polymerization from 10 to 15), the activity of OSOXs on short galacturonan- and cellulose-oligomers (degree of polymerization ≤ 4) successfully counteracted the radical cation-generating activity of a fungal laccase, suggesting that OSOXs can generate radical cation scavenging activity in the apoplast with a power proportional to the extent of degradation of the plant cell wall, with possible implications for redox homeostasis and defense against oxidative stress.


Asunto(s)
Peróxido de Hidrógeno , Oligosacáridos , Peróxido de Hidrógeno/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Oxidación-Reducción , Lacasa/metabolismo , Pared Celular/metabolismo , Cationes/metabolismo
12.
Plant Physiol Biochem ; 194: 315-325, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455304

RESUMEN

Oligogalacturonides (OGs) are pectin fragments released from the breakdown of the homogalacturonan during pathogenesis that act as Damage-Associated Molecular Patterns. OG-oxidase 1 (OGOX1) is an Arabidopsis berberine bridge enzyme-like (BBE-l) oligosaccharide oxidase that oxidizes OGs, impairing their elicitor activity and concomitantly releasing H2O2. The OG-oxidizing activity of OGOX1 is markedly pH-dependent, with optimum pH around 10, and is higher towards OGs with a degree of polymerization higher than two. Here, the molecular determinants of OGOX1 responsible for the binding of OGs with different lengths have been investigated through molecular dynamics simulations and enzyme kinetics studies. OGOX1 was simulated in complex with OGs with different degree of polymerization such as di-, tri-, tetra- and penta-galacturonide, in water solution at alkaline pH. Our simulations revealed that, among the four OGOX1/OG combinations, the penta-galacturonide (OG5) showed the best conformation in the active site to be efficiently oxidized by OGOX1. The optimal conformation can be stabilized by salt-bridges formed between the carboxyl groups of OG5 and five positively charged amino acids of OGOX1, highly conserved in all OGOX paralogs. Our results suggest that these interactions limit the mobility of OG5 as well as longer OGs, contributing to maintain the terminal monomer of OGs in the optimal orientation in order to be oxidized by the enzyme. In accordance with these results, the enzyme efficiency (Kcat/KM) of OGOX1 on OG5 (40.04) was found to be significantly higher than that on OG4 (13.05) and OG3 (0.6).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Simulación de Dinámica Molecular , Peróxido de Hidrógeno/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Especificidad por Sustrato
13.
Plant Physiol Biochem ; 203: 108003, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717348

RESUMEN

Plasma membrane-associated Cation-binding Protein 1 (PCaP1) belongs to the plant-unique DREPP protein family with largely unknown biological functions but ascertained roles in plant development and calcium (Ca2+) signaling. PCaP1 is anchored to the plasma membrane via N-myristoylation and a polybasic cluster, and its N-terminal region can bind Ca2+/calmodulin (CaM). However, the molecular determinants of PCaP1-Ca2+-CaM interaction and the functional impact of myristoylation in the complex formation and Ca2+ sensitivity of CaM remained to be elucidated. Herein, we investigated the direct interaction between Arabidopsis PCaP1 (AtPCaP1) and CaM1 (AtCaM1) using both myristoylated and non-myristoylated peptides corresponding to the N-terminal region of AtPCaP1. ITC analysis showed that AtCaM1 forms a high affinity 1:1 complex with AtPCaP1 peptides and the interaction is strictly Ca2+-dependent. Spectroscopic and kinetic Ca2+ binding studies showed that the myristoylated peptide dramatically increased the Ca2+-binding affinity of AtCaM1 and slowed the Ca2+ dissociation rates from both the C- and N-lobes, thus suggesting that the myristoylation modulates the mechanism of AtPCaP1 recognition by AtCaM1. Furthermore, NMR and CD spectroscopy revealed that the structure of both the N- and C-lobes of Ca2+-AtCaM1 changes markedly in the presence of the myristoylated AtPCaP1 peptide, which assumes a helical structure in the final complex. Overall, our results indicate that AtPCaP1 biological function is strictly related to the presence of multiple ligands, i.e., the myristoyl moiety, Ca2+ ions and AtCaM1 and only a full characterization of their equilibria will allow for a complete molecular understanding of the putative role of PCaP1 as signal protein.

14.
Biotechnol Biofuels Bioprod ; 15(1): 138, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510318

RESUMEN

BACKGROUND: 1,3-ß-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-ß-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-ß-glucan without incurring in autolysis. RESULTS: To elucidate the molecular mechanisms at the basis of 1,3-ß-glucan metabolism in fungal saprotrophs, the putative exo-1,3-ß-glucanase G9376 and a truncated form of the putative glucan endo-1,3-ß-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-ß-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-ß-transglucanase/branching activity toward 1,3-ß-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-ß-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (ß/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-ß-transglucanase are discussed. CONCLUSIONS: The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.

15.
Plant Physiol Biochem ; 169: 171-182, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34800821

RESUMEN

During the infection, plant cells secrete different OG-oxidase (OGOX) paralogs, defense flavoproteins that oxidize the oligogalacturonides (OGs), homogalacturonan fragments released from the plant cell wall that act as Damage Associated Molecular Patterns. OGOX-mediated oxidation inactivates their elicitor nature, but on the other hand makes OGs less hydrolysable by microbial endo-polygalacturonases (PGs). Among the different plant defense responses, apoplastic alkalinization can further reduce the degrading potential of PGs by boosting the oxidizing activity of OGOXs. Accordingly, the different OGOXs so far characterized showed an optimal activity at pH values greater than 8. Here, an approach of molecular dynamics (MD)-guided mutagenesis succeeded in identifying the amino acids responsible for the pH dependent activity of OGOX1 from Arabidopsis thaliana. MD simulations indicated that in alkaline conditions (pH 8.5), the residues Asp325 and Asp344 are engaged in the formation of two salt bridges with Arg327 and Lys415, respectively, at the rim of enzyme active site. According to MD analysis, the presence of such ionic bonds modulates the size and flexibility of the cavity used to accommodate the OGs, in turn affecting the activity of OGOX1. Based on functional properties of the site-directed mutants OGOX1.D325A and OGOX.D344A, we demonstrated that Asp325 and Asp344 are major determinants of the alkaline-dependent activity of OGOX1.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Ácido Aspártico , Botrytis/metabolismo , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis , Oxidorreductasas/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-32411686

RESUMEN

Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.

17.
Biomolecules ; 10(1)2020 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963736

RESUMEN

The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work is to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, United States of America (US) and Italy (IT), by applying a combination of functional proteomics, metabolomics, and in vivo analyses. Several protein-profile differences were detected between IT- and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Performing proton nuclear magnetic spectroscopy (1H-NMR), some discrepancies in amino acid, lactate, betaine and sucrose concentrations were also reported between the two products. Finally, we investigated the health-promoting and antiaging effects of both products in the model organism Caenorhabditis elegans. The integration of omics platforms with in vivo analysis has emerged as a powerful tool to assess manufacturing procedures.


Asunto(s)
Bifidobacterium/química , Suplementos Dietéticos/microbiología , Lactobacillus/química , Probióticos/análisis , Streptococcus thermophilus/química , Envejecimiento , Animales , Proteínas Bacterianas/análisis , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Suplementos Dietéticos/análisis , Longevidad , Metabolómica , Probióticos/farmacología , Proteómica
18.
Free Radic Biol Med ; 147: 200-211, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870799

RESUMEN

Selective suicide inhibitors represent a seductively attractive approach for inactivation of therapeutically relevant enzymes since they are generally devoid of off-target toxicity in vivo. While most suicide inhibitors are converted to reactive species at enzyme active sites, theoretically bioactivation can also occur in ectopic (secondary) sites that have no known function. Here, we report an example of such an "ectopic suicide inhibition", an unprecedented bioactivation mechanism of a suicide inhibitor carried out by a non-catalytic site of thioredoxin glutathione reductase (TGR). TGR is a promising drug target to treat schistosomiasis, a devastating human parasitic disease. Utilizing hits selected from a high throughput screening campaign, time-resolved X-ray crystallography, molecular dynamics, mass spectrometry, molecular modeling, protein mutagenesis and functional studies, we find that 2-naphtholmethylamino derivatives bound to this novel ectopic site of Schistosoma mansoni (Sm)TGR are transformed to covalent modifiers and react with its mobile selenocysteine-containing C-terminal arm. In particular, one 2-naphtholmethylamino compound is able to specifically induce the pro-oxidant activity in the inhibited enzyme. Since some 2-naphtholmethylamino analogues show worm killing activity and the ectopic site is not conserved in human orthologues, a general approach to development of novel and selective anti-parasitic therapeutics against schistosoma is proposed.


Asunto(s)
Complejos Multienzimáticos , NADH NADPH Oxidorreductasas , Animales , Cristalografía por Rayos X , Glutatión Reductasa , Humanos , NADH NADPH Oxidorreductasas/genética , Schistosoma mansoni , Reductasa de Tiorredoxina-Disulfuro
19.
Sci Rep ; 9(1): 14350, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586085

RESUMEN

The variations in the membrane proteome of tomato fruit pericarp during ripening have been investigated by mass spectrometry-based label-free proteomics. Mature green (MG30) and red ripe (R45) stages were chosen because they are pivotal in the ripening process: MG30 corresponds to the end of cellular expansion, when fruit growth has stopped and fruit starts ripening, whereas R45 corresponds to the mature fruit. Protein patterns were markedly different: among the 1315 proteins identified with at least two unique peptides, 145 significantly varied in abundance in the process of fruit ripening. The subcellular and biochemical fractionation resulted in GO term enrichment for organelle proteins in our dataset, and allowed the detection of low-abundance proteins that were not detected in previous proteomic studies on tomato fruits. Functional annotation showed that the largest proportion of identified proteins were involved in cell wall metabolism, vesicle-mediated transport, hormone biosynthesis, secondary metabolism, lipid metabolism, protein synthesis and degradation, carbohydrate metabolic processes, signalling and response to stress.


Asunto(s)
Frutas/crecimiento & desarrollo , Microsomas/química , Proteoma/análisis , Solanum lycopersicum/crecimiento & desarrollo , Frutas/química , Frutas/citología , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/química , Solanum lycopersicum/citología , Solanum lycopersicum/metabolismo , Espectrometría de Masas , Microsomas/metabolismo , Proteoma/metabolismo , Proteómica/métodos
20.
Proteomics ; 8(5): 1042-54, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18324730

RESUMEN

Oligogalacturonides (OGs) are elicitors of plant defence responses released from the homogalacturonan of the plant cell wall during the attack by pathogenic micro-organisms. The signalling pathway mediated by OGs remains poorly understood, and no proteins involved in their signal perception and transduction have yet been identified. In order to shed light into the molecular pathways regulated by OGs, a differential proteomic analysis has been carried out in Arabidopsis. Proteins from the apoplastic compartment were isolated and their expression compared between control and OG-treated seedlings. 2-D gels and difference in gel electrophoresis (DIGE) techniques were used to compare control and treated proteomes in the same gel. The analysis of subcellular proteomes from seedlings allowed the identification of novel and low abundance proteins that otherwise remain masked when total cellular extracts are investigated. The DIGE technique showed to be a powerful tool to overcome the high interexperiment variation of 2-D gels. Differentially expressed apoplastic proteins were identified by MS and included proteins putatively involved in recognition as well as proteins whose PTMs are regulated by OGs. Our findings underscore the importance of cell wall as a source of molecules playing a role in the perception of pathogens and provide candidate proteins involved in the response to OGs.


Asunto(s)
Proteínas de Arabidopsis/análisis , Arabidopsis/metabolismo , Pared Celular/química , Ácidos Hexurónicos/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/genética , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Plantones/química , Plantones/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA