RESUMEN
The widespread adoption of gGaN in radiation-hard semiconductor devices relies on a comprehensive understanding of its response to strongly ionizing radiation. Despite being widely acclaimed for its high radiation resistance, the exact effects induced by ionization are still hard to predict due to the complex phase-transition diagrams and defect creation-annihilation dynamics associated with group-III nitrides. Here, the Two-Temperature Model, Molecular Dynamics simulations and Transmission Electron Microscopy, are employed to study the interaction of Swift Heavy Ions with GaN at the atomic level. The simulations reveal a high propensity of GaN to recrystallize the region melted by the impinging ion leading to high thresholds for permanent track formation. Although the effect exists in all studied electronic energy loss regimes, its efficiency is reduced with increasing electronic energy loss, in particular when there is dissociation of the material and subsequent formation of N2 bubbles. The recrystallization is also hampered near the surface where voids and pits are prominent. The exceptional agreement between the simulated and experimental results establishes the applicability of the model to examine the entire electronic energy loss spectrum. Furthermore, the model supports an empirical relation between the interaction cross sections (namely for melting and amorphization) and the electronic energy loss.
Asunto(s)
ElectrónicaRESUMEN
The effectiveness of amine-borane as reducing agent for the synthesis of iron nanoparticles has been investigated. Large (2-4â nm) Fe nanoparticles were obtained from [Fe{N(SiMe3)2}2]. Inclusion of boron in the nanoparticles is clearly evidenced by extended X-ray absorption fine structure spectroscopy and Mössbauer spectrometry. Furthermore, the reactivity of amine-borane and amino-borane complexes in the presence of pure Fe nanoparticles has been investigated. Dihydrogen evolution was observed in both cases, which suggests the potential of Fe nanoparticles to promote the release of dihydrogen from amine-borane and amino-borane moieties.
Asunto(s)
Boranos/química , Compuestos de Boro/química , Hierro/química , Nanopartículas del Metal/química , Nanopartículas/química , Espectroscopía de Mossbauer , Espectroscopía de Absorción de Rayos XRESUMEN
Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 µW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.