Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 18(19): 3624-3637, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32154553

RESUMEN

Surface modification represents an active field of research that finds applications, amongst others, in the development of medical devices, sensors and biosensors, anti-biofouling materials, self-cleaning surfaces, surfaces with controlled wettability, corrosion resistance, heterogeneous catalysis and microelectronics. For some applications, surface functionalization with a nanometric-size monolayer is desired. In this review, efforts to covalently functionalize a wide array of surfaces with calixarenes bearing diazonium groups are described. More specifically, methodologies to obtain monolayers of calix[4 or 6]arene derivatives on conductive, semi-conductive or insulating surfaces as well as on nanoparticles are presented. The main advantages of this general surface modification strategy (i.e. formation of true monolayers that can be post-functionalized, high robustness and control over the composition of the calixarene-based coating) and its current scope of applications and future challenges are discussed.

2.
Langmuir ; 34(21): 6021-6027, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29724105

RESUMEN

Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.

3.
Beilstein J Org Chem ; 14: 1758-1768, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30112081

RESUMEN

Photoactive ruthenium-based complexes are actively studied for their biological applications as potential theragnostic agents against cancer. One major issue of these inorganic complexes is to penetrate inside cells in order to fulfil their function, either sensing the internal cell environment or exert a photocytotoxic activity. The use of lipophilic ligands allows the corresponding ruthenium complexes to passively diffuse inside cells but limits their structural and photophysical properties. Moreover, this strategy does not provide any cell selectivity. This limitation is also faced by complexes anchored on cell-penetrating peptides. In order to provide a selective cell targeting, we developed a multivalent system composed of a photoreactive ruthenium(II) complex tethered to a calix[4]arene platform bearing multiple RGD-containing cyclopentapeptides. Extensive photophysical and photochemical characterizations of this Ru(II)-calixarene conjugate as well as the study of its photoreactivity in the presence of guanosine monophosphate have been achieved. The results show that the ruthenium complex should be able to perform efficiently its photoinduced cytotoxic activity, once incorporated into targeted cancer cells thanks to the multivalent platform.

4.
Langmuir ; 33(33): 8253-8259, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28727432

RESUMEN

Labile ligands such as thiols and carboxylates are commonly used to functionalize AuNPs, though little control over the composition is possible when mixtures of ligands are used. It was shown recently that robustly functionalized AuNPs can be obtained through the reductive grafting of calix[4]arenes bearing diazonium groups on the large rim. Here, we report a calix[4]arene-tetradiazonium decorated by four oligo(ethylene glycol) chains on the small rim, which upon grafting gave AuNPs with excellent stability thanks to the C-Au bonds. Mixtures of this calixarene and one with four carboxylate groups were grafted on AuNPs. The resulting particles were analyzed by infrared spectroscopy, which revealed that the composition of the ligand shell clearly reflected the ratio of calixarenes that was present in solution. This strategy opens the way to robustly protected AuNPs with well-defined numbers of functional or postfunctionalizable groups.

5.
Inorg Chem ; 52(19): 11228-36, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24010548

RESUMEN

The grafting of photoreactive and photooxidizing Ru(II)(TAP) (TAP = 1,4,5,8-tetraazaphenanthrene) complexes on calix[4 or 6]arene molecular platforms is reported. Thus, either [Ru(TAP)2(phen)](2+) (phen = 1,10-phenanthroline) or [Ru(TAP)2(pytz)](2+) [pytz = 2-(1,2,3-triazol-4-yl)pyridine] complexes are anchored to the calixarenes. The data in electrochemistry, combined with those in emission under steady state and pulsed illumination and the determination of the associated photophysical rate constants, indicate the presence of intramolecular luminescence quenching by the phenol moieties of calixarene. From transient absorption studies under pulsed laser irradiation, it is concluded that the quenching originates from a par proton-coupled electron transfer (PCET) process. Such an intramolecular quenching is absent when the phenol groups of the calixarene platform are derivatized by azido arms.

6.
ChemSusChem ; 16(8): e202201990, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752278

RESUMEN

A conceptual challenge toward more versatile direct methanol fuel cells (DMFCs) is the design of a single material electrocatalyst with high activity and durability for both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). This requires to conciliate methanol tolerance not to hinder ORR at the cathode with a good MOR activity at the anode. This is especially incompatible with Pt materials. We tackled this challenge by deriving a supramolecular concept where surface-grafted molecular ligands regulate the Pt-catalyst reactivity. ORR and MOR activities of newly reported Pt-calix[4]arenes nanocatalysts (Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C) are compared to commercial benchmark PtNPs/C. Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C exhibit a remarkable methanol tolerance without losing the MOR reactivity along with outstanding durability and chemical stability. Beyond designing single-catalyst material, operable in DMFC cathodic and anodic compartments, the results highlight a promising strategy for tuning interfacial properties.

7.
J Org Chem ; 77(8): 3838-45, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22428688

RESUMEN

The ipso-nitration of calix[6]arene-based molecular receptors is a important synthetic pathway for the elaboration of more sophisticated systems. This reaction has been studied for a variety of capped calixarenes, and a general trend for the regioselective nitration of three aromatic units out of six in moderate to high yield has been observed. This selectivity is, in part, attributed to the electronic connection between the protonated cap at the small rim and the reactive sites at the large rim. In addition, this work highlights the fact that subtle conformational properties can drastically influence the outcome of this reaction.

8.
Chempluschem ; 87(4): e202100450, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044106

RESUMEN

The development of efficient, reliable, and easy-to-use biosensors allowing early cancer diagnosis is of paramount importance for patients. Herein, we report a biosensor based on silver nanoparticles functionalized by peptide aptamers for the detection of a cancer biomarker, i. e. the Mdm2 protein. Silver nanoparticles (AgNPs) were produced and stabilized with a thin PEGylated-calix[4]arene layer that allows (i) the steric stabilization of the AgNPs and (ii) the covalent conjugation of the peptide aptamers via the formation of an amide bond. These peptide-conjugated AgNPs were then used to detect Mdm2 via a dual trapping strategy that was previously reported with gold nanoparticles (AuNPs). Our results showed that replacing AuNPs by AgNPs improves the detection limit by nearly one order of magnitude, down to 5 nM, while the high selectivity of the system and the stability of the particles provided by the calixarene coating allow the detection of Mdm2 in human serum.


Asunto(s)
Oro , Nanopartículas del Metal , Colorimetría/métodos , Oro/química , Humanos , Nanopartículas del Metal/química , Péptidos , Proteínas Proto-Oncogénicas c-mdm2 , Plata/química
9.
Chempluschem ; 87(4): e202200043, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266324

RESUMEN

Invited for this month's cover are the collaborating groups of Prof. Gilles Bruylants and Prof. Ivan Jabin, Université libre de Bruxelles, Belgium. The cover picture shows the principle of a colorimetric sensor, based on peptide-conjugated silver nanoparticles, for the detection of the cancer biomarker Mdm2. The particles were functionalized via a recently developed strategy based on the use of calixarene diazonium salts. The calixarene-based coating provides an unprecedented stability to the silver nanoparticles, enabling their use as colorimetric reporters for in vitro diagnostics. The cover was designed by I. Jabin. More information can be found in the Research Article by I. Jabin, G. Bruylants, and co-workers.


Asunto(s)
Nanopartículas del Metal , Plata , Colorimetría , Humanos , Proteínas Oncogénicas , Péptidos , Proteínas Proto-Oncogénicas c-mdm2
10.
Front Chem ; 8: 559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766206

RESUMEN

Pioneered by J. Pinson and coll. in 1990s, the reductive grafting of aryldiazonium salts has become a powerful method for surface functionalization. Highly robust interfaces result from this surface attachment, resistant to heat, chemical degradation and ultrasonication. Importantly, this approach can be applied to many materials, ranging from conducting, semi-conducting, oxides to insulating substrates. In addition, either massive, flat surfaces or nanomaterials can be functionalized. The method is easy to process and fast. The grafting process involves the formation of highly reactive aryl radicals able to attack the substrate. However, the generated radicals can also react with already-grafted aryl species, leading to the formation of loosely-packed polyaryl multilayer films, typically of 10-15 nm thick. It is thus highly challenging to control the vertical extension of the deposited layer and to form well-ordered monolayers from aryldiazonium salts. In this mini review, we briefly describe the different strategies that have been developed to prepare well-ordered monolayers. We especially focus on two strategies successfully used in our laboratories, namely the use of unconventional solvents, i.e., room temperature ionic liquids (RTILs), as grafting media and the use of calixarene macrocycles by taking benefit of their pre-organized structure. These strategies give large possibilities for the structuring of interfaces with the widest choice of materials and highlight the potential of aryldiazonium grafting as a competitive alternative to self-assembled monolayers (SAMs) of alkyl thiols.

11.
RSC Adv ; 10(23): 13553-13561, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492995

RESUMEN

The (electro)chemical grafting of a polyfluorinated calix[4]arene on gold, polypropylene and glass is reported. The modified surfaces were characterized by ellipsometry, atomic force microscopy (AFM), and by X-ray photoelectron spectroscopy (XPS). A nanometric, robust and uniform monolayer of covalently surface-bound calix[4]arenes was obtained on the three different materials. For all surfaces, contact angles higher than 110° were recorded, highlighting the hydrophobic character given by this ∼2 nm thin organic monolayer. Remarkably, the contact angle values remained unchanged after 18 months under a laboratory atmosphere. The results presented herein thus present an attractive and sustainable strategy for bringing hydrophobic properties to the interface of a wide range of materials.

12.
Chem Commun (Camb) ; 52(69): 10493-6, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27452314

RESUMEN

Gold nanoparticles stabilized with a thin layer of post-functionalizable calix[4]arenes were prepared through the reductive grafting of a calix[4]arene-tetra-diazonium salt. These particles show exceptional stability towards extreme pH, F(-), NaCl, and upon drying. Post-functionalization of the calix-layer was demonstrated, opening the way to a wide range of applications.

13.
Nat Commun ; 3: 1130, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23072800

RESUMEN

An essential issue in the development of materials presenting an accurately functionalized surface is to achieve control of layer structuring. Whereas the very popular method based on the spontaneous adsorption of alkanethiols on metal faces stability problems, the reductive electrografting of aryldiazonium salts yielding stable interface, struggles with the control of the formation and organization of monolayers. Here we report a general strategy for patterning surfaces using aryldiazonium surface chemistry. Calix[4]tetra-diazonium cations generated in situ from the corresponding tetra-anilines were electrografted on gold and carbon substrates. The well-preorganized macrocyclic structure of the calix[4]arene molecules allows the formation of densely packed monolayers. Through adequate decoration of the small rim of the calixarenes, functional molecules can then be introduced on the immobilized calixarene subunits, paving the way for an accurate spatial control of the chemical composition of a surface at molecular level.

14.
Dalton Trans ; 40(28): 7395-402, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21687868

RESUMEN

Two ligands containing 1,2,3-triazole moieties 1 and 3 were easily prepared by a Cu(I)-catalysed "click reaction" between commercially available (trimethylsilyl)alkynes and benzyl azide. These ligands were used in the synthesis of Ru(II) complexes with TAP ligands, i.e. [Ru(TAP)(2)btz](2+)2 and [Ru(TAP)(2)pytz](2+)4. The electrochemical and photophysical properties of these complexes were investigated. The data show that both complexes should behave as highly oxidizing agents under illumination. However, complex 4 displays more attractive photophysical properties than complex 2 and constitutes thus a Ru-TAP compound that can be easily derivatized for photodamaging biomolecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA