Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Physiol Biochem ; 47(4): 1509-1532, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29940568

RESUMEN

BACKGROUND/AIMS: From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ("hair") bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS: Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION: We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audición/fisiología , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Factores de Transcripción Forkhead/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células Ciliadas Auditivas Internas/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
3.
Cells ; 11(24)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552747

RESUMEN

Peroxisome Biogenesis Disorders (PBD) and Zellweger syndrome spectrum disorders (ZSD) are rare genetic multisystem disorders that include hearing impairment and are associated with defects in peroxisome assembly, function, or both. Mutations in 13 peroxin (PEX) genes have been found to cause PBD-ZSD with ~70% of patients harboring mutations in PEX1. Limited research has focused on the impact of peroxisomal disorders on auditory function. As sensory hair cells are particularly vulnerable to metabolic changes, we hypothesize that mutations in PEX1 lead to oxidative stress affecting hair cells of the inner ear, subsequently resulting in hair cell degeneration and hearing loss. Global deletion of the Pex1 gene is neonatal lethal in mice, impairing any postnatal studies. To overcome this limitation, we created conditional knockout mice (cKO) using Gfi1Creor VGlut3Cre expressing mice crossed to floxed Pex1 mice to allow for selective deletion of Pex1 in the hair cells of the inner ear. We find that Pex1 excision in inner hair cells (IHCs) leads to progressive hearing loss associated with significant decrease in auditory brainstem responses (ABR), specifically ABR wave I amplitude, indicative of synaptic defects. Analysis of IHC synapses in cKO mice reveals a decrease in ribbon synapse volume and functional alterations in exocytosis. Concomitantly, we observe a decrease in peroxisomal number, indicative of oxidative stress imbalance. Taken together, these results suggest a critical function of Pex1 in development and maturation of IHC-spiral ganglion synapses and auditory function.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas , Pérdida Auditiva , Sinapsis , Animales , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Cóclea/inervación , Cóclea/metabolismo , Sordera/genética , Sordera/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audición/fisiología , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Ratones Noqueados , Sinapsis/genética , Sinapsis/metabolismo
5.
Nat Commun ; 8: 14907, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387217

RESUMEN

Mutations in GPSM2 cause Chudley-McCullough syndrome (CMCS), an autosomal recessive neurological disorder characterized by early-onset sensorineural deafness and brain anomalies. Here, we show that mutation of the mouse orthologue of GPSM2 affects actin-rich stereocilia elongation in auditory and vestibular hair cells, causing deafness and balance defects. The G-protein subunit Gαi3, a well-documented partner of Gpsm2, participates in the elongation process, and its absence also causes hearing deficits. We show that Gpsm2 defines an ∼200 nm nanodomain at the tips of stereocilia and this localization requires the presence of Gαi3, myosin 15 and whirlin. Using single-molecule tracking, we report that loss of Gpsm2 leads to decreased outgrowth and a disruption of actin dynamics in neuronal growth cones. Our results elucidate the aetiology of CMCS and highlight a new molecular role for Gpsm2/Gαi3 in the regulation of actin dynamics in epithelial and neuronal tissues.


Asunto(s)
Actinas/metabolismo , Agenesia del Cuerpo Calloso/genética , Quistes Aracnoideos/genética , Proteínas Portadoras/genética , Conos de Crecimiento/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Pérdida Auditiva Sensorineural/genética , Neuronas/metabolismo , Estereocilios/metabolismo , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/fisiopatología , Animales , Quistes Aracnoideos/metabolismo , Quistes Aracnoideos/fisiopatología , Proteínas de Ciclo Celular , Sordera/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Miosinas/metabolismo , Equilibrio Postural , Trastornos de la Sensación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA