RESUMEN
Dietary rice bran (RB) has shown capacity to influence metabolism by modulation of gut microbiota in individuals at risk for colorectal cancer (CRC), which warranted attention for delineating mechanisms for bidirectional influences and cross-feeding between the host and RB-modified gut microbiota to reduce CRC. Accordingly, in the present study, fermented rice bran (FRB, fermented with a RB responsive microbe Bifidobacterium longum), and non-fermented RB were fed as 10% w/w (diet) to gut microbiota-intactspf or germ-free micegf to investigate comparative efficacy against inflammation-associated azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC. Results indicated both microbiota-dependent and independent mechanisms for RB meditated protective efficacy against CRC that was associated with reduced neoplastic lesion size and local-mucosal/systemic inflammation, and restoration of colonic epithelial integrity. Enrichment of beneficial commensals (such as, Clostridiales, Blautia, Roseburia), phenolic metabolites (benzoate and catechol metabolism), and dietary components (ferulic acid-4 sulfate, trigonelline, and salicylate) were correlated with anti-CRC efficacy. Germ-free studies revealed gender-specific physiological variables could differentially impact CRC growth and progression. In the germ-free females, the RB dietary treatment showed a â¼72% reduction in the incidence of colonic epithelial erosion when compared to the â¼40% reduction in FRB-fed micegf . Ex vivo fermentation of RB did not parallel the localized-protective benefits of gut microbial metabolism by RB in damaged colonic tissues. Findings from this study suggest potential needs for safety considerations of fermented fiber rich foods as dietary strategies against severe inflammation-associated colon tumorigenesis (particularly with severe damage to the colonic epithelium).
Asunto(s)
Bifidobacterium longum , Microbioma Gastrointestinal , Oryza , Animales , Azoximetano/toxicidad , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Colon/patología , Sulfato de Dextran/toxicidad , Dieta , Modelos Animales de Enfermedad , Femenino , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Oryza/metabolismoRESUMEN
Dietary rice bran-mediated inhibition of colon carcinogenesis was demonstrated previously for carcinogen-induced rodent models via multiple anti-cancer mechanisms. This study investigated the role of dietary rice bran-mediated changes to fecal microbiota and metabolites over the time course of colon carcinogenesis and compared murine fecal metabolites to human stool metabolic profiles following rice bran consumption by colorectal cancer survivors (NCT01929122). Forty adult male BALB/c mice were subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated colon carcinogenesis and randomized to control AIN93M (n = 20) or diets containing 10% w/w heat-stabilized rice bran (n = 20). Feces were serially collected for 16S rRNA amplicon sequencing and non-targeted metabolomics. Fecal microbiota richness and diversity was increased in mice and humans with dietary rice bran treatment. Key drivers of differential bacterial abundances from rice bran intake in mice included Akkermansia, Lactococcus, Lachnospiraceae, and Eubacterium xylanophilum. Murine fecal metabolomics revealed 592 biochemical identities with notable changes to fatty acids, phenolics, and vitamins. Monoacylglycerols, dihydroferulate, 2-hydroxyhippurate (salicylurate), ferulic acid 4-sulfate, and vitamin B6 and E isomers significantly differed between rice bran- and control-fed mice. The kinetics of murine metabolic changes by the host and gut microbiome following rice bran consumption complemented changes observed in humans for apigenin, N-acetylhistamine, and ethylmalonate in feces. Increased enterolactone abundance is a novel diet-driven microbial metabolite fecal biomarker following rice bran consumption in mice and humans from this study. Dietary rice bran bioactivity via gut microbiome metabolism in mice and humans contributes to protection against colorectal cancer. The findings from this study provide compelling support for rice bran in clinical and public health guidelines for colorectal cancer prevention and control.
RESUMEN
The consumption of the non-steroidal anti-inflammatory drug (NSAID) aspirin is associated with a significant reduction in the risk of developing TMPRSS2-ERG (fusion)-positive prostate cancer (PCa) compared to fusion-negative PCa in population-based case-control studies; however, no extensive preclinical studies have been conducted to investigate and confirm these protective benefits. Thus, the focus of this study was to determine the potential usefulness of aspirin and another NSAID, naproxen, in PCa prevention, employing preclinical models of both TMPRSS2-ERG (fusion)-driven (with conditional deletion of Pten) and non-TMPRSS2-ERG-driven (Hi-Myc+/- mice) PCa. Male mice (n = 25 mice/group) were fed aspirin- (700 and 1400 ppm) and naproxen- (200 and 400 ppm) supplemented diets from (a) 6 weeks until 32 weeks of Hi-Myc+/- mice age; and (b) 1 week until 20 weeks post-Cre induction in the fusion model. In all NSAID-fed groups, compared to no-drug controls, there was a significant decrease in higher-grade adenocarcinoma incidence in the TMPRSS2-ERG (fusion)-driven PCa model. Notably, there were no moderately differentiated (MD) adenocarcinomas in the dorsolateral prostate of naproxen groups, and its incidence also decreased by ~79-91% in the aspirin cohorts. In contrast, NSAIDs showed little protective effect against prostate tumorigenesis in Hi-Myc+/- mice, suggesting that NSAIDs exert a specific protective effect against TMPRSS2-ERG (fusion)-driven PCa.
RESUMEN
Rice bran, removed from whole grain rice for white rice milling, has demonstrated efficacy for the control and suppression of colitis and colon cancer in multiple animal models. Dietary rice bran intake was shown to modify human stool metabolites as a result of modifications to metabolism by gut microbiota. In this study, human stool microbiota from colorectal cancer (CRC) survivors that consumed rice bran daily was examined by fecal microbiota transplantation (FMT) for protection from azoxymethane and dextran sodium sulfate (AOM/DSS) induced colon carcinogenesis in germ-free mice. Mice transfaunated with rice bran-modified microbiota communities (RMC) harbored fewer neoplastic lesions in the colon and displayed distinct enrichment of Flavonifractor and Oscillibacter associated with colon health, and the depletion of Parabacteroides distasonis correlated with increased tumor burden. Two anti-cancer metabolites, myristoylcarnitine and palmitoylcarnitine were increased in the colon of RMC transplanted mice. Trimethylamine-N-oxide (TMAO) and tartarate that are implicated in CRC development were reduced in murine colon tissue after FMT with rice bran-modified human microbiota. Findings from this study show that rice bran modified gut microbiota from humans confers protection from colon carcinogenesis in mice and suggests integrated dietary-FMT intervention strategies should be tested for colorectal cancer control, treatment, and prevention.
RESUMEN
The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.
Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas , Neoplasias/tratamiento farmacológico , Quercetina/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Disponibilidad Biológica , Portadores de Fármacos , Humanos , Estructura Molecular , Quercetina/química , Quercetina/uso terapéutico , SolubilidadRESUMEN
Tamoxifen (Tmx) embedded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-Tmx) is prepared to evaluate its better DNA cleavage potential, cytotoxicity using Dalton's lymphoma ascite (DLA) cells and MDA-MB231 breast cancer cells. PLGA-Tmx nanoparticles are prepared through emulsified nanoprecipitation technique with varying dimension of 17-30nm by changing the concentrations of polymer, emulsifier and drug. Nanoparticles dimension are measured through electron and atomic force microscopy. Interactions between tamoxifen and PLGA are verified through spectroscopic and calorimetric methods. PLGA-Tmx shows excellent DNA cleavage potential as compared to pure Tmx raising better bioavailability. In vitro cytotoxicity studies indicate that PLGA-Tmx reduces DLA cells viability up to â¼38% against â¼15% in pure Tmx. Hoechst stain is used to detect apoptotic DLA cells through fluorescence imaging of nuclear fragmentation and condensation exhibiting significant increase of apoptosis (70%) in PLGA-Tmx vis-à-vis pure drug (58%). Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGA-Tmx as compared to pure Tmx in terms of receptor mediated endocytosis. Hence, the sustained release kinetics of PLGA-Tmx nanoparticles shows much better anticancer efficacy through enhanced DNA cleavage potential and nuclear fragmentation and, thereby, reveal a novel vehicle for the treatment of cancer.