Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 167(3): 774-788.e17, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768896

RESUMEN

Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72 , Nucléolo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Humanos , Membranas Intracelulares/metabolismo , Poro Nuclear/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas/genética
2.
Mol Cell ; 74(4): 742-757.e8, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30979586

RESUMEN

Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína que Contiene Valosina/genética , Adenosina Trifosfatasas/genética , Animales , Autofagia/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Ratones , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Fosforilación/genética , Estrés Fisiológico/genética , Ubiquitina/genética
3.
Biochemistry ; 55(14): 2187-96, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27002236

RESUMEN

Y-family DNA polymerases are known to bypass DNA lesions in vitro and in vivo and rescue stalled DNA replication machinery. Dpo4, a well-characterized model Y-family DNA polymerase, is known to catalyze translesion synthesis across a variety of DNA lesions including 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxo-dG). Our previous X-ray crystallographic, stopped-flow Förster resonance energy transfer (FRET), and computational simulation studies have revealed that Dpo4 samples a variety of global conformations as it recognizes and binds DNA. Here we employed single-molecule FRET (smFRET) techniques to investigate the kinetics and conformational dynamics of Dpo4 when it encountered 8-oxo-dG, a major oxidative lesion with high mutagenic potential. Our smFRET data indicated that Dpo4 bound the DNA substrate in multiple conformations, as suggested by three observed FRET states. An incoming correct or incorrect nucleotide affected the distribution and stability of these states with the correct nucleotide completely shifting the equilibrium toward a catalytically competent complex. Furthermore, the presence of the 8-oxo-dG lesion in the DNA stabilized both the binary and ternary complexes of Dpo4. Thus, our smFRET analysis provided a basis for the enhanced efficiency which Dpo4 is known to exhibit when replicating across from 8-oxo-dG.


Asunto(s)
Proteínas Arqueales/metabolismo , Daño del ADN , ADN Polimerasa beta/metabolismo , Reparación del ADN , Modelos Moleculares , Ingeniería de Proteínas , Sulfolobus solfataricus/enzimología , 8-Hidroxi-2'-Desoxicoguanosina , Sustitución de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Simulación por Computador , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Mutación , Oxidación-Reducción , Conformación Proteica , Replegamiento Proteico , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes
4.
PLoS Comput Biol ; 10(9): e1003804, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188490

RESUMEN

Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , ADN/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Temperatura
5.
Biochemistry ; 53(17): 2804-14, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24716482

RESUMEN

The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Daño del ADN , ADN Polimerasa beta/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleótidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Conformación Proteica , Estructura Terciaria de Proteína , Sulfolobus solfataricus/enzimología
6.
Biochemistry ; 53(11): 1768-78, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24568554

RESUMEN

Numerous kinetic, structural, and theoretical studies have established that DNA polymerases adjust their domain structures to enclose nucleotides in their active sites and then rearrange critical active site residues and substrates for catalysis, with the latter conformational change acting to kinetically limit the correct nucleotide incorporation rate. Additionally, structural studies have revealed a large conformational change between the apoprotein and the DNA-protein binary state for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell, B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol. 7, e1000225], a real-time Förster resonance energy transfer (FRET) method was developed to monitor the global conformational transitions of DNA polymerase IV from Sulfolobus solfataricus (Dpo4), a prototype Y-family enzyme, during nucleotide binding and incorporation by measuring changes in distance between locations on the enzyme and the DNA substrate. To elucidate further details of the conformational transitions of Dpo4 during substrate binding and catalysis, in this study, the real-time FRET technique was used to monitor changes in distance between various pairs of locations in the protein itself. In addition to providing new insight into the conformational changes as revealed in previous studies, the results here show that the previously described conformational change between the apo and DNA-bound states of Dpo4 occurs in a mechanistic step distinct from initial formation or dissociation of the binary complex of Dpo4 and DNA.


Asunto(s)
ADN Polimerasa beta/química , Transferencia Resonante de Energía de Fluorescencia , Conformación Proteica , Sulfolobus solfataricus/enzimología , Apoproteínas/química , Apoproteínas/metabolismo , ADN Polimerasa beta/metabolismo , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Especificidad por Sustrato
7.
J Biol Chem ; 288(16): 11590-600, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23463511

RESUMEN

Replicative DNA polymerases use a complex, multistep mechanism for efficient and accurate DNA replication as uncovered by intense kinetic and structural studies. Recently, single-molecule fluorescence spectroscopy has provided new insights into real time conformational dynamics utilized by DNA polymerases during substrate binding and nucleotide incorporation. We have used single-molecule Förster resonance energy transfer techniques to investigate the kinetics and conformational dynamics of Sulfolobus solfataricus DNA polymerase B1 (PolB1) during DNA and nucleotide binding. Our experiments demonstrate that this replicative polymerase can bind to DNA in at least three conformations, corresponding to an open and closed conformation of the finger domain as well as a conformation with the DNA substrate bound to the exonuclease active site of PolB1. Additionally, our results show that PolB1 can transition between these conformations without dissociating from a primer-template DNA substrate. Furthermore, we show that the closed conformation is promoted by a matched incoming dNTP but not by a mismatched dNTP and that mismatches at the primer-template terminus lead to an increase in the binding of the DNA to the exonuclease site. Our analysis has also revealed new details of the biphasic dissociation kinetics of the polymerase-DNA binary complex. Notably, comparison of the results obtained in this study with PolB1 with those from similar single-molecule studies with an A-family DNA polymerase suggests mechanistic differences between these polymerases. In summary, our findings provide novel mechanistic insights into protein conformational dynamics and substrate binding kinetics of a high fidelity B-family DNA polymerase.


Asunto(s)
Proteínas Arqueales/química , ADN Polimerasa II/química , ADN de Archaea/química , Sulfolobus/enzimología , Proteínas Arqueales/metabolismo , ADN Polimerasa II/metabolismo , ADN de Archaea/biosíntesis , Cinética , Unión Proteica , Estructura Terciaria de Proteína
8.
J Biol Chem ; 287(16): 13040-7, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22362779

RESUMEN

A major product of oxidative damage to DNA, 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), can lead to genomic mutations if it is bypassed unfaithfully by DNA polymerases in vivo. However, our pre-steady-state kinetic studies show that DNA polymerase IV (Dpo4), a prototype Y-family enzyme from Sulfolobus solfataricus, can bypass 8-oxoG both efficiently and faithfully. For the first time, our stopped-flow FRET studies revealed that a DNA polymerase altered its synchronized global conformational dynamics in response to a DNA lesion. Relative to nucleotide incorporation into undamaged DNA, three of the four domains of Dpo4 undertook different conformational transitions during 8-oxoG bypass and the subsequent extension step. Moreover, the rapid translocation of Dpo4 along DNA induced by nucleotide binding was significantly hindered by the interactions between the embedded 8-oxoG and Dpo4 during the extension step. These results unprecedentedly demonstrate that a Y-family DNA polymerase employs different global conformational dynamics when replicating undamaged and damaged DNA.


Asunto(s)
Proteínas Bacterianas , ADN Polimerasa beta , Estrés Oxidativo/fisiología , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Daño del ADN/fisiología , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN Bacteriano/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanina/análogos & derivados , Guanina/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína
9.
Biochemistry ; 51(16): 3485-96, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22471521

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, exhibits ambiguous coding potential and can lead to genomic mutations. Tight control of 8-oxoG bypass during DNA replication is therefore extremely important in hyperthermophiles as the rate of oxidative damage to DNA is significantly increased at high temperatures. Here we employed pre-steady state kinetics to compare the kinetic responses to an 8-oxoG lesion of the main replicative and lesion bypass DNA polymerases of Sulfolobus solfataricus, a hyperthermophilic crenarchaeon. Upon encountering 8-oxoG, PolB1, the replicative DNA polymerase, was completely stalled by the lesion, as its 3' → 5' exonuclease activity increased significantly and outcompeted its slowed polymerase activity at and near the lesion site. In contrast, our results show that Dpo4, the lone Y-family DNA polymerase in S. solfataricus, can faithfully and efficiently incorporate nucleotides opposite 8-oxoG and extend from an 8-oxoG:C base pair with a mechanism similar to that observed for the replication of undamaged DNA. Furthermore, we show that the stalling of PolB1 at the lesion site can be relieved by Dpo4. Finally, the 3' → 5' exonuclease activity of PolB1 was the highest when 8-oxoG was mispaired with an incorrect nucleotide and could therefore correct rare mistakes made by Dpo4 during 8-oxoG bypass. These results provide a kinetic basis for a potential polymerase switching mechanism during 8-oxoG bypass whereby Dpo4 can switch with the stalled PolB1 at the replication fork to bypass and extend the damaged DNA and then switch off of the DNA substrate to allow continued replication of undamaged DNA by the more faithful PolB1.


Asunto(s)
Proteínas Arqueales/química , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , Sulfolobus solfataricus/enzimología , 8-Hidroxi-2'-Desoxicoguanosina/análogos & derivados , Proteínas Arqueales/metabolismo , Emparejamiento Base , Secuencia de Bases , ADN/química , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Cinética , Datos de Secuencia Molecular , Oxidación-Reducción , Sulfolobus solfataricus/metabolismo
10.
Chem Res Toxicol ; 25(7): 1531-40, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22667759

RESUMEN

Sulfolobus solfataricus DNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C.


Asunto(s)
ADN Polimerasa beta/metabolismo , Dicroismo Circular , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Colorantes Fluorescentes/química , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Desplegamiento Proteico , Sulfolobus solfataricus/enzimología , Temperatura de Transición
11.
PLoS Biol ; 7(10): e1000225, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19859523

RESUMEN

Replicative DNA polymerases are stalled by damaged DNA while the newly discovered Y-family DNA polymerases are recruited to rescue these stalled replication forks, thereby enhancing cell survival. The Y-family DNA polymerases, characterized by low fidelity and processivity, are able to bypass different classes of DNA lesions. A variety of kinetic and structural studies have established a minimal reaction pathway common to all DNA polymerases, although the conformational intermediates are not well defined. Furthermore, the identification of the rate-limiting step of nucleotide incorporation catalyzed by any DNA polymerase has been a matter of long debate. By monitoring time-dependent fluorescence resonance energy transfer (FRET) signal changes at multiple sites in each domain and DNA during catalysis, we present here a real-time picture of the global conformational transitions of a model Y-family enzyme: DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. Our results provide evidence for a hypothetical DNA translocation event followed by a rapid protein conformational change prior to catalysis and a subsequent slow, post-chemistry protein conformational change. Surprisingly, the DNA translocation step was induced by the binding of a correct nucleotide. Moreover, we have determined the directions, rates, and activation energy barriers of the protein conformational transitions, which indicated that the four domains of Dpo4 moved in a synchronized manner. These results showed conclusively that a pre-chemistry conformational change associated with domain movements was too fast to be the rate-limiting step. Rather, the rearrangement of active site residues limited the rate of correct nucleotide incorporation. Collectively, the conformational dynamics of Dpo4 offer insights into how the inter-domain movements are related to enzymatic function and their concerted interactions with other proteins at the replication fork.


Asunto(s)
ADN Polimerasa beta/química , Catálisis , Dominio Catalítico , Reparación del ADN , Replicación del ADN , ADN de Archaea/genética , ADN de Archaea/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Conformación Proteica , Especificidad por Sustrato , Sulfolobus solfataricus/química
12.
J Mol Biol ; 433(5): 166811, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33450252

RESUMEN

Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein-protein interactions with APE1 to ensure timely repair of damaged DNA.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/análogos & derivados , ADN Glicosilasas/química , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN/química , 8-Hidroxi-2'-Desoxicoguanosina/química , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Sitios de Unión , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Genoma Humano , Inestabilidad Genómica , Humanos , Cinética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Imagen Individual de Molécula , Especificidad por Sustrato
13.
Science ; 372(6549): eabc3593, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34739326

RESUMEN

Eukaryotic cells respond to stress through adaptive programs that include reversible shutdown of key cellular processes, the formation of stress granules, and a global increase in ubiquitination. The primary function of this ubiquitination is thought to be for tagging damaged or misfolded proteins for degradation. Here, working in mammalian cultured cells, we found that different stresses elicited distinct ubiquitination patterns. For heat stress, ubiquitination targeted specific proteins associated with cellular activities that are down-regulated during stress, including nucleocytoplasmic transport and translation, as well as stress granule constituents. Ubiquitination was not required for the shutdown of these processes or for stress granule formation but was essential for the resumption of cellular activities and for stress granule disassembly. Thus, stress-induced ubiquitination primes the cell for recovery after heat stress.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Respuesta al Choque Térmico , Proteoma/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Células Cultivadas , Humanos , Ratones , Neuronas , Presión Osmótica , Estrés Oxidativo , Biosíntesis de Proteínas , Proteolisis , Ribonucleoproteínas/metabolismo , Estrés Fisiológico , Rayos Ultravioleta , Proteína que Contiene Valosina/antagonistas & inhibidores , Proteína que Contiene Valosina/metabolismo
14.
Science ; 372(6549): eabf6548, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34739333

RESUMEN

Stress granules are dynamic, reversible condensates composed of RNA and protein that assemble in eukaryotic cells in response to a variety of stressors and are normally disassembled after stress is removed. The composition and assembly of stress granules is well understood, but little is known about the mechanisms that govern disassembly. Impaired disassembly has been implicated in some diseases including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Using cultured human cells, we found that stress granule disassembly was context-dependent: Specifically in the setting of heat shock, disassembly required ubiquitination of G3BP1, the central protein within the stress granule RNA-protein network. We found that ubiquitinated G3BP1 interacted with the endoplasmic reticulum­associated protein FAF2, which engaged the ubiquitin-dependent segregase p97/VCP (valosin-containing protein). Thus, targeting of G3BP1 weakened the stress granule­specific interaction network, resulting in granule disassembly.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Respuesta al Choque Térmico , Proteínas de la Membrana/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína que Contiene Valosina/metabolismo , Autofagia , Línea Celular Tumoral , ADN Helicasas/química , ADN Helicasas/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/genética , Poliubiquitina/metabolismo , Dominios Proteicos , Proteolisis , ARN Helicasas/química , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/química , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas Ubiquitinadas/química , Ubiquitinación
15.
J Mol Biol ; 426(16): 2901-2917, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-24931550

RESUMEN

Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.


Asunto(s)
ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , Replicación del ADN , Oligonucleótidos/metabolismo , Thermus/enzimología , Catálisis , Dominio Catalítico , ADN Bacteriano/genética , Transferencia Resonante de Energía de Fluorescencia , Cinética , Reacción en Cadena de la Polimerasa , Conformación Proteica , Especificidad por Sustrato , Thermus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA