Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Reprod ; 36(7): 1891-1906, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34059912

RESUMEN

STUDY QUESTION: Does hypo-glycosylated human recombinant FSH (hFSH18/21) have greater in vivo bioactivity that drives follicle development in vivo compared to fully-glycosylated human recombinant FSH (hFSH24)? SUMMARY ANSWER: Compared with fully-glycosylated hFSH, hypo-glycosylated hFSH has greater bioactivity, enabling greater follicular health and growth in vivo, with enhanced transcriptional activity, greater activation of receptor tyrosine kinases (RTKs) and elevated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. WHAT IS KNOWN ALREADY: Glycosylation of FSH is necessary for FSH to effectively activate the FSH receptor (FSHR) and promote preantral follicular growth and formation of antral follicles. In vitro studies demonstrate that compared to fully-glycosylated recombinant human FSH, hypo-glycosylated FSH has greater activity in receptor binding studies, and more effectively stimulates the PKA pathway and steroidogenesis in human granulosa cells. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study evaluating the actions of purified recombinant human FSH glycoforms on parameters of follicular development, gene expression and cell signaling in immature postnatal day (PND) 17 female CD-1 mice. To stimulate follicle development in vivo, PND 17 female CD-1 mice (n = 8-10/group) were treated with PBS (150 µl), hFSH18/21 (1 µg/150 µl PBS) or hFSH24 (1 µg/150 µl PBS) by intraperitoneal injection (i.p.) twice daily (8:00 a.m. and 6:00 p.m.) for 2 days. Follicle numbers, serum anti-Müllerian hormone (AMH) and estradiol levels, and follicle health were quantified. PND 17 female CD-1 mice were also treated acutely (2 h) in vivo with PBS, hFSH18/21 (1 µg) or hFSH24 (1 µg) (n = 3-4/group). One ovary from each mouse was processed for RNA sequencing analysis and the other ovary processed for signal transduction analysis. An in vitro ovary culture system was used to confirm the relative signaling pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS: The purity of different recombinant hFSH glycoforms was analyzed using an automated western blot system. Follicle numbers were determined by counting serial sections of the mouse ovary. Real-time quantitative RT-PCR, western blot and immunofluorescence staining were used to determine growth and apoptosis markers related with follicle health. RNA sequencing and bioinformatics were used to identify pathways and processes associated with gene expression profiles induced by acute FSH glycoform treatment. Analysis of RTKs was used to determine potential FSH downstream signaling pathways in vivo. Western blot and in vitro ovarian culture system were used to validate the relative signaling pathways. MAIN RESULTS AND THE ROLE OF CHANCE: Our present study shows that both hypo- and fully-glycosylated recombinant human FSH can drive follicular growth in vivo. However, hFSH18/21 promoted development of significantly more large antral follicles compared to hFSH24 (P < 0.01). In addition, compared with hFSH24, hFSH18/21 also promoted greater indices of follicular health, as defined by lower BAX/BCL2 ratios and reduced cleaved Caspase 3. Following acute in vivo treatment with FSH glycoforms RNA-sequencing data revealed that both FSH glycoforms rapidly induced ovarian transcription in vivo, but hypo-glycosylated FSH more robustly stimulated Gαs and cAMP-mediated signaling and members of the AP-1 transcription factor complex. Moreover, hFSH18/21 treatment induced significantly greater activation of RTKs, PI3K/AKT and MAPK/ERK signaling compared to hFSH24. FSH-induced indices of follicle growth in vitro were blocked by inhibition of PI3K and MAPK. LARGE SCALE DATA: RNA sequencing of mouse ovaries. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION: The observations that hFSH glycoforms have different bioactivities in the present study employing a mouse model of follicle development should be verified in nonhuman primates. The gene expression studies reflect transcriptomes of whole ovaries. WIDER IMPLICATIONS OF THE FINDINGS: Commercially prepared recombinant human FSH used for ovarian stimulation in human ART is fully-glycosylated FSH. Our findings that hypo-glycosylated hFSH has greater bioactivity enabling greater follicular health and growth without exaggerated estradiol production in vivo, demonstrate the potential for its development for application in human ART. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by NIH 1P01 AG029531, NIH 1R01 HD 092263, VA I01 BX004272, and the Olson Center for Women's Health. JSD is the recipient of a VA Senior Research Career Scientist Award (1IK6 BX005797). This work was also partially supported by National Natural Science Foundation of China (No. 31872352). The authors declared there are no conflicts of interest.


Asunto(s)
Hormona Folículo Estimulante Humana , Proteínas Quinasas Activadas por Mitógenos , Folículo Ovárico/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Animales , China , Estudios Transversales , Femenino , Glicosilación , Ratones , Proteínas Recombinantes
2.
Front Endocrinol (Lausanne) ; 13: 767661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329887

RESUMEN

Follicle-stimulating hormone (FSH), an α/ß heterodimeric glycoprotein hormone, consists of functionally significant variants resulting from the presence or absence of either one of two FSHß subunit N-glycans. The two most abundant variants are fully-glycosylated FSH24 (based on 24 kDa FSHß band in Western blots) and hypo-glycosylated FSH21 (21 kDa band, lacks ßAsn24 glycans). Due to its ability to bind more rapidly to the FSH receptor and occupy more FSH binding sites than FSH24, hypo-glycosylated FSH21 exhibits greater biological activity. Endoglycosidase F1-deglycosylated FSH bound to the complete extracellular domain of the FSH receptor crystallized as a trimeric complex. It was noted that a single biantennary glycan attached to FSHα Asn52 might preemptively fill the central pocket in this complex and prevent the other two FSH ligands from binding the remaining ligand-binding sites. As the most active FSH21 preparations possessed more rapidly migrating α-subunit bands in Western blots, we hypothesized that Asn52 glycans in these preparations were small enough to enable greater FSH21 receptor occupancy in the putative FSHR trimer model. Highly purified hFSH oligosaccharides derived from each FSH subunit, were characterized by electrospray ionization-ion mobility-collision-induced dissociation (ESI-IM-CID) mass spectrometry. FSHß glycans typically possessed core-linked fucose and were roughly one third bi-antennary, one third tri-antennary and one third tetra-antennary. FSHα oligosaccharides largely lacked core fucose and were bi- or tri-antennary. Those αAsn52 glycans exhibiting tetra-antennary glycan m/z values were found to be tri-antennary, with lactosamine repeats accounting for the additional mass. Selective αAsn52 deglycosylation of representative pituitary hFSH glycoform Superdex 75 gel filtration fractions followed by ESI-IM-CID mass spectrometry revealed tri-antennary glycans predominated even in the lowest molecular weight FSH glycoforms. Accordingly, the differences in binding capacity of the same receptor preparation to different FSH glycoforms are likely the organization of the FSH receptor in cell membranes, rather than the αAsn52 oligosaccharide.


Asunto(s)
Hormona Folículo Estimulante Humana , Receptores de HFE , Humanos , Receptores de HFE/química , Receptores de HFE/metabolismo , Hormona Folículo Estimulante Humana/química , Asparagina , Fucosa , Hormona Folículo Estimulante/metabolismo , Polisacáridos
3.
Mol Cell Endocrinol ; 514: 110911, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32553947

RESUMEN

Previous studies have reported hypo-glycosylated FSH and fully-glycosylated FSH to be naturally occurring in humans, and these glycoforms exist in changing ratios over a woman's lifespan. The precise cellular and molecular effects of recombinant human FSH (hFSH) glycoforms, FSH21 and FSH24, have not been documented in primary granulosa cells. Herein, biological responses to FSH21 and FSH24 were compared in primary porcine granulosa cells. Hypo-glycosylated hFSH21 was significantly more effective than fully-glycosylated hFSH24 at stimulating cAMP accumulation and protein kinase A (PKA) activity, leading to the higher phosphorylation of CREB and ß-Catenin. Compared to fully-glycosylated hFSH24, hypo-glycosylated hFSH21 also induced greater levels of transcripts for HSD3B, STAR and INHA, and higher progesterone production. Our results demonstrate that hypo-glycosylated hFSH21 exerts more robust activation of intracellular signals associated with steroidogenesis than fully-glycosylated hFSH24 in primary porcine granulosa cells, and furthers our understanding of the differing bioactivities of FSH glycoforms in the ovary.


Asunto(s)
Hormona Folículo Estimulante Humana/farmacología , Células de la Granulosa/efectos de los fármacos , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Hormona Folículo Estimulante Humana/química , Hormona Folículo Estimulante Humana/metabolismo , Glicosilación , Células de la Granulosa/citología , Células de la Granulosa/fisiología , Ovario/efectos de los fármacos , Ovario/metabolismo , Cultivo Primario de Células/veterinaria , Progesterona/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Porcinos , beta Catenina/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-29867757

RESUMEN

Human follicle-stimulating hormone (FSH) exhibits both macro- and microheterogeneity in its carbohydrate moieties. Macroheterogeneity results in three physiologically relevant FSHß subunit variants, two that possess a single N-linked glycan at either one of the two ßL1 loop glycosylation sites or one with both glycans. Microheterogeneity is characterized by 80 to over 100 unique oligosaccharide structures attached to each of the 3 to 4 occupied N-glycosylation sites. With respect to its receptor, partially glycosylated (hypo-glycosylated) FSH variants exhibit higher association rates, greater apparent affinity, and greater occupancy than fully glycosylated FSH. Higher receptor binding-activity is reflected by greater in vitro bioactivity and, in some cases, greater in vivo bioactivity. Partially glycosylated pituitary FSH shows an age-related decline in abundance that may be associated with decreased fertility. In this review, we describe an integrated approach involving genetic models, in vitro signaling studies, FSH biochemistry, relevance of physiological changes in FSH glycoform abundance, and characterize the impact of FSH macroheterogeneity on fertility and reproductive aging. We will also address the controversy with regard to claims of a direct action of FSH in mediating bone loss especially at the peri- and postmenopausal stages.

5.
Mol Cell Endocrinol ; 437: 224-236, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27561202

RESUMEN

The hormone - specific FSHß subunit of the human FSH heterodimer consists of N-linked glycans at Asn7 and Asn24 residues that are co-translationally attached early during subunit biosynthesis. Differences in the number of N-glycans (none, one or two) on the human FSHß subunit contribute to macroheterogeneity in the FSH heterodimer. The resulting FSH glycoforms are termed hypo-glycosylated (FSH21/18, missing either an Asn24 or Asn7 N-glycan chain on the ß - subunit, respectively) or fully glycosylated (FSH24, possessing of both Asn7 and Asn24 N-linked glycans on the ß - subunit) FSH. The recombinant versions of human FSH glycoforms (FSH21/18 and FSH24) have been purified and biochemically characterized. In vitro functional studies have indicated that FSH21/18 exhibits faster FSH- receptor binding kinetics and is much more active than FSH24 in every assay tested to date. However, the in vivo bioactivity of the hypo-glycosylated FSH glycoform has never been tested. Here, we evaluated the in vivo bioactivities of FSH glycoforms in Fshb null mice using a pharmacological rescue approach. In Fshb null female mice, both hypo- and fully-glycosylated FSH elicited an ovarian weight gain response by 48 h and induced ovarian genes in a dose- and time-dependent manner. Quantification by real time qPCR assays indicated that hypo-glycosylated FSH21/18 was bioactive in vivo and induced FSH-responsive ovarian genes similar to fully-glycosylated FSH24. Western blot analyses followed by densitometry of key signaling components downstream of the FSH-receptor confirmed that the hypo-glycosylated FSH21/18 elicited a response similar to that by fully-glycosylated FSH24 in ovaries of Fshb null mice. When injected into Fshb null males, hypo-glycosylated FSH21/18 was more active than the fully-glycosylated FSH24 in inducing FSH-responsive genes and Sertoli cell proliferation. Thus, our data establish that recombinant hypo-glycosylated human FSH21/18 glycoform elicits bioactivity in vivo similar to the fully-glycosylated FSH. Our studies may have clinical implications particularly in formulating FSH-based ovarian follicle induction protocols using a combination of different human FSH glycoforms.


Asunto(s)
Hormona Folículo Estimulante Humana/farmacología , Hormona Folículo Estimulante de Subunidad beta/deficiencia , Proteínas Recombinantes/farmacología , Animales , Western Blotting , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Hormona Folículo Estimulante Humana/química , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicosilación , Humanos , Masculino , Ratones Noqueados , Ovario/efectos de los fármacos , Ovario/metabolismo , Fosforilación/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo
6.
J Clin Endocrinol Metab ; 100(6): E852-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915568

RESUMEN

CONTEXT: Previous studies suggest that aging in women is associated with a reduction in hypoglycosylated forms of FSH. OBJECTIVE: Experiments were performed to determine whether glycosylation of the FSHß subunit modulates the biological activity of FSH in human granulosa cells. DESIGN AND SETTING: Recombinant human FSH (hFSH) derived from GH3 pituitary cells was purified into fractions containing hypoglycosylated hFSH(21/18) and fully glycosylated hFSH(24). The response to FSH glycoforms was evaluated using the well-characterized, FSH-responsive human granulosa cell line, KGN at an academic medical center. INTERVENTIONS: Granulosa cells were treated with increasing concentrations of fully- or hypoglycosylated FSH glycoforms for periods up to 48 hours. MAIN OUTCOME MEASURE(S): The main outcomes were indices of cAMP-dependent cell signaling and estrogen and progesterone synthesis. RESULTS: We observed that hypoglycosylated FSH(21/18) was significantly more effective than fully glycosylated FSH(24) at stimulating cAMP accumulation, protein kinase A (PKA) activity, and cAMP response element binding protein (CREB) (S133) phosphorylation. FSH(21/18) was also much more effective than hFSH(24) on the stimulation CREB-response element-mediated transcription, expression of aromatase and STAR proteins, and synthesis of estrogen and progesterone. Adenoviral-mediated expression of the endogenous inhibitor of PKA, inhibited FSH(21/18)- and FSH(24)-stimulated CREB phosphorylation, and steroidogenesis. CONCLUSIONS: Hypoglycosylated FSH(21/18) has greater bioactivity than fully glycosylated hFSH(24), suggesting that age-dependent decreases in hypoglycosylated hFSH contribute to reduced ovarian responsiveness. Hypoglycosylated FSH may be useful in follicle stimulation protocols for older patients using assisted reproduction technologies.


Asunto(s)
Hormona Folículo Estimulante Humana/metabolismo , Hormona Folículo Estimulante Humana/farmacología , Células de la Granulosa/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Secuencia de Carbohidratos , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Glicosilación , Células de la Granulosa/metabolismo , Humanos , Fosforilación , Isoformas de Proteínas
7.
Mol Cell Endocrinol ; 405: 42-51, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25661536

RESUMEN

Previously, our laboratory demonstrated the existence of a ß-subunit glycosylation-deficient human FSH glycoform, hFSH(21). A third variant, hFSH(18), has recently been detected in FSH glycoforms isolated from purified pituitary hLH preparations. Human FSH(21) abundance in individual female pituitaries progressively decreased with increasing age. Hypo-glycosylated glycoform preparations are significantly more active than fully-glycosylated hFSH preparations. The purpose of this study was to produce, purify and chemically characterize both glycoform variants expressed by a mammalian cell line. Recombinant hFSH was expressed in a stable GH3 cell line and isolated from serum-free cell culture medium by sequential, hydrophobic and immunoaffinity chromatography. FSH glycoform fractions were separated by Superdex 75 gel-filtration. Western blot analysis revealed the presence of both hFSH(18) and hFSH(21) glycoforms in the low molecular weight fraction, however, their electrophoretic mobilities differed from those associated with the corresponding pituitary hFSH variants. Edman degradation of FSH(21/18)-derived ß-subunit before and after peptide-N-glycanase F digestion confirmed that it possessed a mixture of both mono-glycosylated FSHß subunits, as both Asn(7) and Asn(24) were partially glycosylated. FSH receptor-binding assays confirmed our previous observations that hFSH(21/18) exhibits greater receptor-binding affinity and occupies more FSH binding sites when compared to fully-glycosylated hFSH(24). Thus, the age-related reduction in hypo-glycosylated hFSH significantly reduces circulating levels of FSH biological activity that may further compromise reproductive function. Taken together, the ability to express and isolate recombinant hFSH glycoforms opens the way to study functional differences between them both in vivo and in vitro.


Asunto(s)
Hormona Folículo Estimulante/fisiología , Animales , Células CHO , Conformación de Carbohidratos , Secuencia de Carbohidratos , Bovinos , Línea Celular Tumoral , Cricetinae , Cricetulus , Hormona Folículo Estimulante/química , Hormona Folículo Estimulante/aislamiento & purificación , Glicosilación , Humanos , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Ratas , Receptores de HFE/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Análisis de Secuencia de Proteína
8.
Exp Biol Med (Maywood) ; 227(9): 709-23, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12324652

RESUMEN

At the biomedical, regulatory, and public level, considerable concern surrounds the concept that inappropriate exposure to endocrine-disrupting chemicals, especially during the prenatal and/or neonatal period, may disrupt normal reproductive tract development and adult function. The intent of this review was to 1. Describe some unique advantages of the hamster for perinatal endocrine disruptor (ED) studies, 2. Summarize the morphological and molecular consequences of exposure to the established perinatal ED, diethylstilbestrol, in the female and male hamster, 3. Present some new, histomorphological insight into the process of neonatal diethylstilbestrol-induced disruption in the hamster uterus, and 4. Introduce recent efforts and future plans to evaluate the potency and mechanism of action of other putative EDs in the hamster experimental system. Taken together, the findings indicate that the hamster represents a unique and sensitive in vivo system to probe the phenomenon of endocrine disruption. The spectrum of candidate endpoints includes developmental toxicity, neoplasia, and more subtle endpoints of reproductive dysfunction.


Asunto(s)
Dietilestilbestrol/farmacología , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales , Feto/efectos de los fármacos , Mesocricetus , Modelos Animales , Animales , Cricetinae , Estrógenos no Esteroides/farmacología , Femenino , Masculino , Ovario/efectos de los fármacos , Ovario/trasplante , Útero/efectos de los fármacos , Útero/patología , Útero/ultraestructura
9.
Mol Cell Endocrinol ; 382(2): 989-97, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24291635

RESUMEN

Hypo-glycosylated hFSH(21/18) (possesses FSHß(21) and FSHß(18)bands) was isolated from hLH preparations by immunoaffinity chromatography followed by gel filtration. Fully-glycosylated hFSH(24) was prepared by combining the fully-glycosylated FSHß(24) variant with hCGα and isolating the heterodimer. The hFSH(21/18) glycoform preparation was significantly smaller than the hFSH(24) preparation and possessed 60% oligomannose glycans, which is unusual for hFSH. Hypo-glycosylated hFSH(21/18) was 9- to 26-fold more active than fully-glycosylated hFSH(24) in FSH radioligand assays. Significantly greater binding of (125)I-hFSH(21/18) tracer than hFSH(24) tracer was observed in all competitive binding assays. In addition, higher binding of hFSH(21/18) was noted in association and saturation binding assays, in which twice as much hFSH(21/18) was bound as hFSH(24). This suggests that more ligand binding sites are available to hFSH(21/18) in FSHR than to hFSH(24). Hypo-glycosylated hFSH(21/18) also bound rat FSHRs more rapidly, exhibiting almost no lag in binding, whereas hFSH(24) specific binding proceeded very slowly for almost the first hour of incubation.


Asunto(s)
Hormona Folículo Estimulante Humana/química , Hormonas Glicoproteicas de Subunidad alfa/química , Hormona Luteinizante/química , Manosa/química , Receptores de HFE/química , Animales , Sitios de Unión , Unión Competitiva , Cromatografía de Afinidad , Cromatografía en Gel , Hormona Folículo Estimulante Humana/aislamiento & purificación , Hormona Folículo Estimulante Humana/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Glicosilación , Humanos , Radioisótopos de Yodo , Hormona Luteinizante/metabolismo , Manosa/metabolismo , Unión Proteica , Multimerización de Proteína , Ensayo de Unión Radioligante , Ratas , Receptores de HFE/metabolismo , Análisis de Secuencia de Proteína
10.
Reprod Toxicol ; 32(4): 472-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21963885

RESUMEN

We assessed neonatal diethylstilbestrol (DES)-induced disruption at various endocrine levels in the hamster. In particular, we used organ transplantation into the hamster cheek pouch to determine whether abnormalities observed in the post-pubertal ovary are due to: (a) a direct (early) mechanism or (b) an indirect (late) mechanism that involves altered development and function of the hypothalamus and/or pituitary. Of the various disruption endpoints and attributes assessed: (1) some were consistent with the direct mechanism (altered uterine and cervical dimensions/organization, ovarian polyovular follicles, vaginal hypospadius, endometrial hyperplasia/dysplasia); (2) some were consistent with the indirect mechanism (ovarian/oviductal salpingitis, cystic ovarian follicles); (3) some were consistent with a combination of the direct and indirect mechanisms (altered endocrine status); and (4) the mechanism(s) for one (lack of corpora lutea) was uncertain. This study also generated some surprising observations regarding vaginal estrous assessments as a means to monitor periodicity of ovarian function in the hamster.


Asunto(s)
Animales Recién Nacidos , Dietilestilbestrol/toxicidad , Estrógenos no Esteroides/toxicidad , Genitales Femeninos/efectos de los fármacos , Animales , Cuello del Útero/anatomía & histología , Cricetinae , Ciclo Estral , Trompas Uterinas/anatomía & histología , Trompas Uterinas/efectos de los fármacos , Trompas Uterinas/fisiología , Femenino , Genitales Femeninos/anatomía & histología , Genitales Femeninos/fisiología , Hormonas/sangre , Hipotálamo/fisiología , Mesocricetus , Ovariectomía , Ovario/anatomía & histología , Ovario/fisiología , Ovario/trasplante , Hipófisis/fisiología , Embarazo , Maduración Sexual , Útero/anatomía & histología , Vagina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA