Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32393497

RESUMEN

Chagas disease, caused by the protozoan Trypanosoma cruzi, endemic in Latin America but distributed worldwide because of migration. Without appropriate treatment, the disease progresses from an acute asymptomatic phase to a chronic, progressive inflammatory cardiomyopathy causing heart failure and death. Despite specific trypanocidal therapy, heart damage progression cannot be stopped or reversed. Statins, as part of their pleiotropic actions, can modulate chagasic myocarditis by inducing the production of 15-epi-lipoxin A4 (15-epi-LXA4), a proresolution lipid mediator in inflammation. Furthermore, several reports suggest that simvastatin activates the Notch pathway after stroke in cerebral endothelial cells, enhancing blood flow by promoting angiogenesis. Thus, statins are an attractive therapeutic strategy for modulating the Notch pathway to reverse the chronic heart damage induced by T. cruzi BALB/c mice chronically infected with T. cruzi were treated with 1 mg/kg/day simvastatin or 25 µg/kg/day 15-epi-LXA4 for 20 days. During the treatment period, cardiac function was evaluated by echocardiography. At 80 days postinfection, the heart tissues were assessed for Notch 1 activity. T. cruzi infection activated the Notch 1 pathway, and simvastatin (but not 15-epi-lipoxin A4) produced a further increase in that activity, correlating with improvement in the ejection fraction and histopathologic findings typical of T. cruzi infection, including improvements in inflammation and fibrosis. Moreover, simvastatin increased the number of isolectin B4-positive cells, suggesting active angiogenesis in the chronically infected hearts without alteration of the parasitic load. Simvastatin, probably acting through the Notch 1 pathway, decreases inflammation, improving cardiac function in mice chronically infected with T. cruzi.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Animales , Cardiomiopatía Chagásica/tratamiento farmacológico , Células Endoteliales , Ratones , Ratones Endogámicos BALB C , Simvastatina/farmacología , Simvastatina/uso terapéutico
2.
Cell Biol Int ; 44(5): 1112-1123, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31943572

RESUMEN

Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.


Asunto(s)
Aspirina/farmacología , Expresión Génica/efectos de los fármacos , Proteína HMGB1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/parasitología , Nitroimidazoles/farmacología , Receptor Notch1/metabolismo , Simvastatina/farmacología , Células Cultivadas , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Trypanosoma cruzi
3.
J Biol Inorg Chem ; 23(2): 303-312, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29349663

RESUMEN

To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co2+, Mn2+, Ni2+) with the bisphosphonate ibandronate (iba, H4iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(Hxiba)](2-x)- (x = 0-3) and [M(Hiba)2]4- together with the formation of the neutral polynuclear species [M2iba] and [M3(Hiba)2] were detected for all studied systems. In the solid state, complexes of the formula [M3(Hiba)2(H2O)4]·6H2O were obtained and characterized. All obtained complexes, forming [M(Hiba)]- species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Ácido Ibandrónico/química , Ácido Ibandrónico/farmacología , Metales/química , Transferasas Alquil y Aril/antagonistas & inhibidores , Animales , Chlorocebus aethiops , Geraniltranstransferasa/antagonistas & inhibidores , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Células Vero
4.
Bioorg Med Chem ; 25(2): 621-632, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27908757

RESUMEN

Oxidative stress is involved in several parasitic diseases such as Chagas. Agents able to selectively modulate biochemical processes involved in the disease represent promising multifunctional agents for the delay or abolishment of the progression of this pathology. In the current work, differently substituted hydroxy-3-arylcoumarins are described, exerting both antioxidant and trypanocidal activity. Among the compounds synthesized, compound 8 showed the most interesting profile, presenting a moderate scavenging ability for peroxyl radicals (ORAC-FL=2.23) and a high degree of selectivity towards epimastigotes stage of the parasite T. cruzi (IC50=1.31µM), higher than Nifurtimox (drug currently used for treatment of Chagas disease). Interestingly, the current study revealed that small structural changes in the hydroxy-3-arylcoumarin core allow modulating both activities, suggesting that this scaffold has desirable properties for the development of promising classes of antichagasic compounds.


Asunto(s)
Antioxidantes/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Cumarinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Enfermedad de Chagas/parasitología , Chlorocebus aethiops , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Células RAW 264.7 , Relación Estructura-Actividad , Tripanocidas/química , Células Vero
5.
Exp Parasitol ; 173: 9-17, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939813

RESUMEN

Congenital transmission of Trypanosoma cruzi (T. cruzi) is partially responsible for the progressive globalization of Chagas disease. During congenital transmission the parasite must cross the placental barrier where the trophoblast, a continuous renewing epithelium, is the first tissue in contact with the parasite. The trophoblast turnover implies cellular proliferation, differentiation and apoptotic cell death. The epithelial turnover is considered part of innate immunity. We previously demonstrated that T. cruzi induces cellular differentiation and apoptosis in this tissue. Here we demonstrate that T. cruzi induces cellular proliferation in a trophoblastic cell line. We analyzed the cellular proliferation in BeWo cells by determining DNA synthesis by BrdU incorporation assays, mitotic index, cell cycle analysis by flow cytometry, as well as quantification of nucleolus organizer regions by histochemistry and expression of the proliferation markers PCNA and Ki67 by Western blotting and/or immunofluorescence. Additionally, we determined the ERK1/2 MAPK pathway activation by the parasite by Western blotting.


Asunto(s)
Proliferación Celular , Trofoblastos/citología , Trofoblastos/parasitología , Trypanosoma cruzi/fisiología , Animales , División Celular , Línea Celular Tumoral , ADN/biosíntesis , Citometría de Flujo , Fase G2 , Antígeno Ki-67/metabolismo , Sistema de Señalización de MAP Quinasas , Índice Mitótico , Región Organizadora del Nucléolo/ultraestructura , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fase S , Trofoblastos/metabolismo
6.
J Interprof Care ; 31(6): 777-780, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28922024

RESUMEN

Multiple interprofessional integrated modules (MIIM) 1 and 2 are two required, cross-curricular courses developed by a team of health professions faculty, as well as experts in education, within the Faculty of Medicine of the University of Chile. MIIM 1 focused on virtual cases requiring team decision-making in real time. MIIM 2 focused on a team-based community project. The evaluation of MIIM included student, teacher, and coordinator perspectives. To explore the perceptions of this interprofessional experience quantitative data in the form of standardised course evaluations regarding teaching methodology, interpersonal relations and the course organisation and logistics were gathered. In addition, qualitative perceptions were collected from student focus groups and meetings with tutors and coordinators. Between 2010 and 2014, 881 students enrolled in MIIM. Their evaluation scores rated interpersonal relations most highly, followed by organisation and logistics, and then teaching methodology. A key result was the learning related to interprofessional team work by the teaching coordinators, as well as the participating faculty. The strengths of this experience included student integration and construction of new knowledge, skill development in making decisions, and collective self-learning. Challenges included additional time management and tutors' role. This work requires valuation of an alternative way of learning, which is critical for the performance of future health professionals.


Asunto(s)
Docentes/organización & administración , Empleos en Salud/educación , Relaciones Interprofesionales , Estudiantes del Área de la Salud/psicología , Actitud del Personal de Salud , Chile , Toma de Decisiones Clínicas , Humanos , Grupo de Atención al Paciente , Percepción
7.
Microb Pathog ; 99: 123-129, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27554274

RESUMEN

Congenital Chagas disease, caused by Trypanosoma cruzi, is partially responsible for the progressive globalization of Chagas disease despite of its low transmission rate. The probability of congenital transmission depends on complex interactions between the parasite, the maternal and fetus/newborn immune responses and placental factors, being the latter the least studied one. During transplacental transmission, the parasite must cross the placental barrier where the trophoblast, a continuous renewing epithelium, is the first tissue to have contact with the parasite. Importantly, the epithelial turnover is considered part of the innate immune system since pathogens, prior to cell invasion, must attach to the surface of cells. The trophoblast turnover involves cellular processes such as proliferation, differentiation and apoptotic cell death, all of them are induced by the parasite. In the present review, we analyze the current evidence about the trophoblast epithelial turnover as a local placental innate immune response.


Asunto(s)
Enfermedad de Chagas/inmunología , Inmunidad Innata , Placenta/inmunología , Placenta/parasitología , Complicaciones Infecciosas del Embarazo/inmunología , Trofoblastos/inmunología , Trypanosoma cruzi/inmunología , Apoptosis , Diferenciación Celular , Proliferación Celular , Enfermedad de Chagas/parasitología , Femenino , Humanos , Embarazo , Complicaciones Infecciosas del Embarazo/parasitología , Trofoblastos/parasitología , Trofoblastos/fisiología
8.
Toxicol Appl Pharmacol ; 309: 2-14, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27554043

RESUMEN

Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP(+)). Thus, we evaluated five TPP(+)-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having a wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP(+)-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP(+) and its derivatives warrant future investigation as potential anti-tumor agents.


Asunto(s)
Neoplasias de la Mama/patología , Hidroxibenzoatos/farmacología , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/química , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Hidroxibenzoatos/química , Concentración 50 Inhibidora , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Oxígeno/metabolismo
9.
Exp Parasitol ; 168: 9-15, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27328973

RESUMEN

Congenital Chagas disease is caused by the protozoan parasite Trypanosoma cruzi that must cross the placental barrier during transmission. The trophoblast constitutes the first tissue in contact with the maternal-blood circulating parasite. Importantly, the congenital transmission rates are low, suggesting the presence of local placental defense mechanisms. Cellular proliferation and differentiation as well as apoptotic cell death are induced by the parasite and constitute part of the epithelial turnover of the trophoblast, which has been suggested to be part of those placental defenses. On the other hand, caspase-8 is an essential molecule in the modulation of trophoblast turnover by apoptosis and by epithelial differentiation. As an approach to study whether T. cruzi induced trophoblast turnover and infection is mediated by caspase-8, we infected BeWo cells (a trophoblastic cell line) with the parasite and determined in the infected cells the expression and enzymatic activity of caspase-8, DNA synthesis (as proliferation marker), ß-human chorionic gonadotropin (ß-hCG) (as differentiation marker) and activity of Caspase-3 (as apoptotic death marker). Parasite load in BeWo cells was measured by DNA quantification using qPCR and cell counting. Our results show that T. cruzi induces caspase-8 activity and that its inhibition increases trophoblast cells infection while decreases parasite induced cellular differentiation and apoptotic cell death, but not cellular proliferation. Thus, caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against T. cruzi infection. Together with our previous results, we suggest that the trophoblast turnover is part of local placental anti-parasite mechanisms.


Asunto(s)
Caspasa 8/metabolismo , Trofoblastos/enzimología , Trofoblastos/parasitología , Trypanosoma cruzi/inmunología , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 8/inmunología , Inhibidores de Caspasas/farmacología , Línea Celular , Chlorocebus aethiops , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Trofoblastos/inmunología , Células Vero
10.
Toxicol Appl Pharmacol ; 272(2): 356-64, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23777606

RESUMEN

Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Catecoles/farmacología , Transporte de Electrón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fenoles/farmacología , Animales , Antineoplásicos Fitogénicos/química , Catecoles/química , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Dilatación Mitocondrial/efectos de los fármacos , Estructura Molecular , Necrosis , Fenoles/química , Especies Reactivas de Oxígeno/metabolismo
11.
Toxicol Appl Pharmacol ; 267(3): 218-27, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23333614

RESUMEN

Tumor cells present a known metabolic reprogramming, which makes them more susceptible for a selective cellular death by modifying its mitochondrial bioenergetics. Anticancer action of the antioxidant 9,10-dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one (HQ) on mouse mammary adenocarcinoma TA3, and its multiresistant variant TA3-MTXR, were evaluated. HQ decreased the viability of both tumor cells, affecting slightly mammary epithelial cells. This hydroquinone blocked the electron flow through the NADH dehydrogenase (Complex I), leading to ADP-stimulated oxygen consumption inhibition, transmembrane potential dissipation and cellular ATP level decrease, without increasing ROS production. Duroquinol, an electron donor at CoQ level, reversed the decrease of cell viability induced by HQ. Additionally, HQ selectively induced G2/M-phase arrest. Taken together, our results suggest that the bioenergetic dysfunction provoked by HQ is implicated in its anticancer action.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Metabolismo Energético/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Hidroquinonas/farmacología , Neoplasias Mamarias Animales/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Metabolismo Energético/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Hidroquinonas/química , Hidroquinonas/uso terapéutico , Masculino , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Ratones , Mitocondrias/fisiología
12.
Exp Parasitol ; 133(1): 12-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23116598

RESUMEN

Chagas' disease is caused by the haemophlagelated protozoan Trypanosoma cruzi (T. cruzi). During congenital transmission the parasite breaks down the placental barrier, however studies about the physiopathology of this process are scarce. Different signal transduction pathways are involved during cell invasion of the parasite. However, the possible role of those processes during tissue infection has not been studied. In the present study we analyzed the modulation of two signal transduction pathways, PLC-γ and ERK1/2 MAPK, during ex vivo infection of human placental chorionic villi explants. Chorionic villi from healthy woman placentas were incubated in the presence or absence of 10(5) or 10(6)T. cruzi trypomastigotes (DM28c strain) with or without specific inhibitors for each pathway. Effective infection was tested determining parasite DNA by PCR. The activation of PLC-γ and ERK1/2 MAPK signaling pathways was determined by western blotting and immunofluorescence. The low concentration of T. cruzi trypomastigotes activates both signaling pathways; however, the high concentration of parasite induces a modest activation of the PLC-γ pathway and impairs the ERK1/2 MAPK pathway activation. Interestingly, inhibition of any of those signaling pathways did not prevent parasite infection, as it was previously shown in cell cultures. We conclude that both signal transduction pathways are modulated during ex vivo T. cruzi infection of human placental chorionic villi explants.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Fosfolipasa C gamma/metabolismo , Placenta/enzimología , Placenta/parasitología , Animales , Chlorocebus aethiops , Vellosidades Coriónicas/enzimología , Vellosidades Coriónicas/parasitología , Femenino , Humanos , Embarazo , Transducción de Señal/fisiología , Células Vero
13.
Parasitol Res ; 112(7): 2731-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23681190

RESUMEN

Chronic Chagas' disease affects 10-30 % of patients infected with Trypanosoma cruzi, and it mainly manifests as cardiomyopathy. Important pathophysiological mechanisms involved in the cardiac lesions include activation of the endothelium and induced microvascular alterations. These processes involve the production of endothelial adhesion molecules and thromboxane A2, which are involved in inflammatory cell recruitment and platelet aggregation, respectively. Cyclooxygenase inhibitors such as aspirin decrease thromboxane production and alter the course of Chagas' disease, both in the acute and chronic phases. We studied the effects of the administration of low and high doses of aspirin during the early phase of T. cruzi infection, following microvascular damage in the context of a chronic murine model of Chagas' disease. The effects of both schedules were assessed at 24 and 90 days postinfection by evaluating parasitemia, mortality, and cardiac histopathological changes as well as the expression of ICAM, VCAM, and E-selectin in cardiac tissue. Thromboxane A2, soluble ICAM, and E-selectin blood levels were also measured. While aspirin did not affect parasitemia or mortality in the infected mice, it decreased both cardiac inflammatory infiltrates and thromboxane levels. Additionally, at 90 days postinfection, aspirin normalized sICAM and sE-selectin levels. Considering the improved endothelial function induced by aspirin, we propose the possibility of including this drug in clinical therapy to treat chronic Chagas' disease.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aspirina/uso terapéutico , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/prevención & control , Endotelio Vascular/patología , Animales , Cardiomiopatía Chagásica/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Parasitemia/tratamiento farmacológico , Análisis de Supervivencia , Tromboxano A2/sangre
14.
Cell Signal ; 109: 110778, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37343898

RESUMEN

Cardiac fibroblasts (CFs) activation is a common response to most pathological conditions affecting the heart, characterized by increased cellular secretory capacity and increased expression of fibrotic markers, such as collagen I and smooth muscle actin type alpha (α-SMA). Fibrotic activation of CFs induces the increase in tissue protein content, with the consequent tissue stiffness, diastolic dysfunction, and heart failure. Therefore, the search for new mechanisms of CFs activation is important to find novel treatments for cardiac diseases characterized by fibrosis. In this regard, TGF-ß1, a cytokine with proinflammatory and fibrotic properties, is crucial in the CFs activation and the development of fibrotic diseases, whereas its molecular targets are not completely known. Serum and glucocorticoid-regulated kinase (SGK1) is a protein involved in various pathophysiological phenomena, especially cardiac and renal diseases that curse with fibrosis. Additionally, SGK1 phosphorylates and regulates the activity and expression of several targets, highlighting FoxO3a for its role in the regulation of oxidative stress and CFs activation induced by TGF-ß1. However, the regulation of SGK1 by TGF-ß1 and its role in CFs activation have not been studied. In this work, we evaluate the role of SGK1 in CFs isolated from neonatal Sprague-Dawley rats. The participation of SGK1 in the fibrotic activation of CFs induced by TGF-ß1 was analyzed, using an inhibitor or siRNA of SGK1. In addition, the role of SGK1 on the regulation of FoxO3a and oxidative stress induced by TGF-ß1 was analyzed. Our results indicate that TGF-ß1 increased both the activity and expression of SGK1 in CFs, requiring the activation of MAPKs, ERK1/2, p38 and JNK, while inhibition and silencing of SGK1 prevented TGF-ß1-induced fibrotic activation of CFs. In addition, SGK1 inhibition prevented FoxO3a inactivation and expression reduction, catalase and SOD2 expression decrease, and the increase of oxidative stress induced by TGF-ß1. Taken together, our results position SGK1 as an important regulator of CFs activation driven by TGF-ß1, at least in part, through the regulation of FoxO3a and oxidative stress.


Asunto(s)
Miocardio , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Ratas Sprague-Dawley , Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Estrés Oxidativo , Fibroblastos/metabolismo , Fibrosis
15.
Placenta ; 143: 117-123, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37898020

RESUMEN

INTRODUCTION: Upon infection, Trypanosoma cruzi, a protozoan parasite, crosses the placental barrier and causes congenital Chagas disease. Ex vivo infection of human placental explants (HPEs) with the parasite induces apoptotic cell death. This cellular process involves changes in gene expression, which are partially regulated by miRNAs. In this study, we investigated the role of miR-512-3p, a highly expressed miRNA in the placenta, in parasite-induced apoptosis. METHODS: HPE cells were transfected with antagomirs or mimics of miR-512-3p and subsequently challenged with the parasite. The expression levels of miR-512-3p, caspase 3, caspase 8, and Livin were measured using RT-qPCR, and apoptotic cell death was analyzed based on caspase activity and DNA fragmentation assays. RESULTS: Targeted inhibition of miR-512-3p effectively prevented parasite-induced expression and enzymatic activity of caspase 3 and caspase 8. However, it did not completely prevent DNA fragmentation, indicating the involvement of other factors in this process. Furthermore, the findings suggest that Livin may be regulated by miR-512-3p. DISCUSSION: Our findings suggest that miR-512-3p modulates parasite-induced apoptosis in the trophoblast. By understanding the mechanisms involved in this process, we can gain insights into the pathogenesis of congenital Chagas disease and develop targeted therapeutic strategies.


Asunto(s)
Enfermedad de Chagas , MicroARNs , Trypanosoma cruzi , Humanos , Embarazo , Femenino , Placenta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Caspasa 3/metabolismo , Caspasa 8 , Enfermedad de Chagas/genética , Apoptosis/genética
16.
Cell Signal ; 106: 110657, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933776

RESUMEN

Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules. The molecular mechanisms that regulate inflammation in CFs are unknown, thus, it is important to find new targets that allow improving treatments for HG-induced cardiac dysfunction. NFκB is the master regulator of inflammation, while FoxO1 is a new participant in the inflammatory response, including inflammation induced by HG; however, its role in the inflammatory response of CFs is unknown. The inflammation resolution is essential for an effective tissue repair and recovery of the organ function. Lipoxin A4 (LXA4) is an anti-inflammatory agent with cytoprotective effects, while its cardioprotective effects have not been fully studied. Thus, in this study, we analyze the role of p65/NFκB, and FoxO1 in CFs inflammation induced by HG, evaluating the anti-inflammatory properties of LXA4. Our results demonstrated that HG induces the inflammatory response in CFs, using an in vitro and ex vivo model, while FoxO1 inhibition and silencing prevented HG effects. Additionally, LXA4 inhibited the activation of FoxO1 and p65/NFκB, and inflammation of CFs induced by HG. Therefore, our results suggest that FoxO1 and LXA4 could be novel drug targets for the treatment of HG-induced inflammatory and fibrotic disorders in the heart.


Asunto(s)
Lipoxinas , Humanos , Lipoxinas/farmacología , FN-kappa B , Inflamación/tratamiento farmacológico , Fibrosis , Glucosa/toxicidad , Fibroblastos , Proteína Forkhead Box O1
17.
Bioorg Med Chem Lett ; 22(17): 5569-73, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22832320

RESUMEN

In the present communication we prepared a series of six 4-hydroxycoumarin derivatives, isosters of quercetin, recognized as an antioxidant natural compound, with the aim of evaluating the antitrypanosomal activity against Trypanosoma cruzi, the parasite responsible for Chagas disease, and the antioxidant properties. We have used the 4-hydroxycoumarin moiety (compound 1) as the molecular template for the synthesis of compounds 2-7. These derivates have shown moderate trypanocidal activity. However they have been proved to be good antioxidants. In particular compound 7 is the most active antioxidant and it is, therefore, a potential candidate for a successful employment in conditions characterized by free radicals overproduction.


Asunto(s)
4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Relación Estructura-Actividad
18.
Pathogens ; 11(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335686

RESUMEN

Congenital Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for 22.5% of new cases each year. However, placental transmission occurs in only 5% of infected mothers and it has been proposed that the epithelial turnover of the trophoblast can be considered a local placental defense against the parasite. Thus, Trypanosoma cruzi induces cellular proliferation, differentiation, and apoptotic cell death in the trophoblast, which are regulated, among other mechanisms, by small non-coding RNAs such as microRNAs. On the other hand, ex vivo infection of human placental explants induces a specific microRNA profile that includes microRNAs related to trophoblast differentiation such as miR-512-3p miR-515-5p, codified at the chromosome 19 microRNA cluster. Here we determined the expression validated target genes of miR-512-3p and miR-515-5p, specifically human glial cells missing 1 transcription factor and cellular FLICE-like inhibitory protein, as well as the expression of the main trophoblast differentiation marker human chorionic gonadotrophin during ex vivo infection of human placental explants, and examined how the inhibition or overexpression of both microRNAs affects parasite infection. We conclude that Trypanosoma cruzi-induced trophoblast epithelial turnover, particularly trophoblast differentiation, is at least partially mediated by placenta-specific miR-512-3p and miR-515-5p and that both miRNAs mediate placental susceptibility to ex vivo infection of human placental explants. Knowledge about the role of parasite-modulated microRNAs in the placenta might enable their use as biomarkers, as prognostic and therapeutic tools for congenital Chagas disease in the future.

19.
Acta Trop ; 235: 106651, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35964709

RESUMEN

Trypanosoma cruzi and Toxoplasma gondii are two zoonotic parasites that constitute significant human and animal health threats, causing a significant economic burden worldwide. Both parasites can be transmitted congenitally, but transmission rates for T. gondii are high, contrary to what has been observed for T. cruzi. The probability of congenital transmission depends on complex interactions between the pathogen and the host, including the modulation of host cell gene expression by miRNAs. During ex vivo infection of canine and ovine placental explants, we evaluated the expression of 3 miRNAs (miR-30e-3p, miR-3074-5p, and miR-127-3p) previously associated with parasitic and placental diseases and modulated by both parasites. In addition, we identified the possible target genes of the miRNAs by using computational prediction tools and performed GO and KEGG enrichment analyses to identify the biological functions and associated pathologies. The three miRNAs are differentially expressed in the canine and ovine placenta in response to T. cruzi and T. gondii. We conclude that the observed differential expression and associated functions might explain, at least partially, the differences in transmission rates and susceptibility to parasite infection in different species.


Asunto(s)
Enfermedad de Chagas , MicroARNs , Toxoplasma , Trypanosoma cruzi , Animales , Enfermedad de Chagas/veterinaria , Perros , Femenino , Humanos , MicroARNs/genética , Placenta/parasitología , Embarazo , Ovinos , Toxoplasma/genética , Trypanosoma cruzi/genética
20.
Open Biol ; 12(6): 210395, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35702995

RESUMEN

MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.


Asunto(s)
MicroARNs , Parásitos , Regiones no Traducidas 3' , Animales , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , MicroARNs/metabolismo , Parásitos/genética , Parásitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA