Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 29(11): 3140-3152, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34601132

RESUMEN

Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Terapia Genética , Animales , Estudios Clínicos como Asunto , Técnicas de Transferencia de Gen , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos/genética , Humanos
2.
Mol Ther Methods Clin Dev ; 18: 98-118, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32995354

RESUMEN

Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p < 0.05-0.0001), in various mouse tissues in vivo (p < 0.03-0.0001), and in human liver in vivo (p < 0.005). These differences may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.

3.
Hum Gene Ther Methods ; 30(6): 195-205, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31855083

RESUMEN

Adeno-associated viral (AAV) vectors have shown great promise in gene delivery as evidenced by recent FDA approvals. Despite efforts to optimize manufacturing for good manufacturing practice (GMP) productions, few academic laboratories have the resources to assess vector composition. One critical component of vector quality is packaged genome fidelity. Errors in viral genome replication and packaging can result in the incorporation of faulty genomes with mutations, truncations, or rearrangements, compromising vector potency. Thus, sequence validation of packaged genome composition is an important quality control (QC), even in academic settings. We developed Fast-Seq, an end-to-end method for extraction, purification, sequencing, and data analysis of packaged single-stranded AAV (ssAAV) genomes intended for non-GMP preclinical environments. We validated Fast-Seq on ssAAV vectors with three different genome compositions (CAG-GFP, CAG-tdTomato, EF1α-FLuc), three different genome sizes (2.9, 3.6, 4.4 kb), packaged in four different capsid serotypes (AAV1, AAV2, AAV5, and AAV8), and produced using the two most common production methods (Baculovirus-Sf9 and human HEK293), from both common commercial vendors and academic core facilities supplying academic laboratories. We achieved an average genome coverage of >1,400 × and an average inverted terminal repeat coverage of >280 × , despite the many differences in composition of each ssAAV sample. When compared with other ssAAV next-generation sequencing (NGS) methods for GMP settings, Fast-Seq has several unique advantages: Tn5 transposase-based fragmentation rather than sonication, 125 × less input DNA, simpler adapter ligation, compatibility with commonly available inexpensive sequencing instruments, and free open-source data analysis code in a preassembled customizable Docker container designed for novices. Fast-Seq can be completed in 18 h, is more cost-effective than other NGS methods, and is more accurate than Sanger sequencing, which is generally only applied at 1-2 × sequencing depth. Fast-Seq is a rapid, simple, and inexpensive methodology to validate packaged ssAAV genomes in academic settings.


Asunto(s)
ADN Viral/química , Dependovirus/genética , Análisis de Secuencia de ADN/métodos , Animales , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , Dependovirus/fisiología , Células HEK293 , Humanos , Células Sf9 , Spodoptera , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA