RESUMEN
Dendritic cells (DCs) have a specialized endomembrane system capable of presenting exogenous antigens in the context of MHC class I (MHC-I) molecules. This process, named cross-presentation, is crucial to activate CD8+ T lymphocytes and initiate cytotoxic immune responses. In this report, we present an Agent-Based Model in combination with Ordinary Differential Equations with enough complexity to reproduce cross-presentation. The model embraces the secretory and endocytic pathways, in connection with the plasma membrane, the endoplasmic reticulum, and the cytosol. Key molecules required for cross-presentation were included as cargoes. In the simulations, the kinetics of MHC-I uptake and recycling, and cross-presentation accurately reproduced experimental values. The model proved to be a suitable tool to elaborate hypotheses and design experiments. In particular, the model predictions and the experimental results obtained indicate that the rate-limiting step in cross-presentation of soluble ovalbumin is MHC-I loading after proteasomal processing of the antigenic protein.
Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Cinética , Ovalbúmina , Linfocitos T CD8-positivosRESUMEN
BACKGROUND: Cell biology is evolving to become a more formal and quantitative science. In particular, several mathematical models have been proposed to address Golgi self-organisation and protein and lipid transport. However, most scientific articles about the Golgi apparatus are still using static cartoons that miss the dynamism of this organelle. RESULTS: In this report, we show that schematic drawings of Golgi trafficking can be easily translated into an agent-based model using the Repast platform. The simulations generate an active interplay among cisternae and vesicles rendering quantitative predictions about Golgi stability and transport of soluble and membrane-associated cargoes. The models can incorporate complex networks of molecular interactions and chemical reactions by association with COPASI, a software that handles ordinary differential equations. CONCLUSIONS: The strategy described provides a simple, flexible and multiscale support to analyse Golgi transport. The simulations can be used to address issues directly linked to the mechanism of transport or as a way to incorporate the complexity of trafficking to other cellular processes that occur in dynamic organelles. SIGNIFICANCE: We show that the rules implicitly present in most schematic representations of intracellular trafficking can be used to build dynamic models with quantitative outputs that can be compared with experimental results.
Asunto(s)
Aparato de Golgi/metabolismo , Transporte Biológico , HumanosRESUMEN
Using a de novo peptide inhibitor, Corza6 (C6), we demonstrate that the human voltage-gated proton channel (hHv1) is the main pathway for H+ efflux that allows capacitation in sperm and permits sustained reactive oxygen species (ROS) production in white blood cells (WBCs). C6 was identified by a phage-display strategy whereby â¼1 million novel peptides were fabricated on an inhibitor cysteine knot (ICK) scaffold and sorting on purified hHv1 protein. Two C6 peptides bind to each dimeric channel, one on the S3-S4 loop of each voltage sensor domain (VSD). Binding is cooperative with an equilibrium affinity (Kd) of â¼1 nM at -50 mV. As expected for a VSD-directed toxin, C6 inhibits by shifting hHv1 activation to more positive voltages, slowing opening and speeding closure, effects that diminish with membrane depolarization.
Asunto(s)
Canales Iónicos/fisiología , Leucocitos/metabolismo , Capacitación Espermática/fisiología , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Células HEK293 , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Masculino , Potenciales de la Membrana , Biblioteca de Péptidos , Péptidos/química , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio , Capacitación Espermática/efectos de los fármacos , Toxinas Biológicas/química , Toxinas Biológicas/farmacologíaRESUMEN
The CPP-effect makes reference to the process by which the membrane translocation rate of a cargo is enhanced by chemical functionalization with cell-penetrating peptides (CPPs). In this work we combine a simple kinetic model with free-energy calculations to explore the energetic basis of the CPP-effect. Two polyglicines are selected as model hydrophilic cargoes, and nona-arginine as a prototypical CPP. We assess the cargo carrying efficiency of nona-arginine by comparing the adsorption and insertion energies of the cargoes, the cargo-free CPPs, and the CPP-cargo complexes, into lipid membranes of varying composition. We also analyze the effect of modifying the type and concentration of anionic lipids, and the implication of these factors on the translocation rate of the CPP-cargo complex. Of particular interest is the evaluation of the catalytic role of palmitic acid (palmitate) as a promoter of the CPP-effect. We also analyse the influence of the size of the cargo on the membrane adsorption and insertion energies. Our results show that the efficiency of nona-arginine as a transmembrane carrier of simple hydrophilic molecules is modulated by the size of the cargo, and is strongly enhanced by increasing the concentration of anionic lipids and of ionized fatty acids in the membrane.
Asunto(s)
Péptidos de Penetración Celular , Ácidos Grasos , Adsorción , Membrana Celular , LípidosRESUMEN
BACKGROUND: Mathematical modelling of infectious diseases is a powerful tool for the design of management policies and a fundamental part of the arsenal currently deployed to deal with the COVID-19 pandemic. METHODS: We present a compartmental model for the disease where symptomatic and asymptomatic individuals move separately. We introduced healthcare burden parameters allowing to infer possible containment and suppression strategies. In addition, the model was scaled up to describe different interconnected areas, giving the possibility to trigger regionalized measures. It was specially adjusted to Mendoza-Argentina's parameters, but is easily adaptable for elsewhere. RESULTS: Overall, the simulations we carried out were notably more effective when mitigation measures were not relaxed in between the suppressive actions. Since asymptomatics or very mildly affected patients are the vast majority, we studied the impact of detecting and isolating them. The removal of asymptomatics from the infectious pool remarkably lowered the effective reproduction number, healthcare burden and overall fatality. Furthermore, different suppression triggers regarding ICU occupancy were attempted. The best scenario was found to be the combination of ICU occupancy triggers (on: 50%, off: 30%) with the detection and isolation of asymptomatic individuals. In the ideal assumption that 45% of the asymptomatics could be detected and isolated, there would be no need for complete lockdown, and Mendoza's healthcare system would not collapse. CONCLUSIONS: Our model and its analysis inform that the detection and isolation of all infected individuals, without leaving aside the asymptomatic group is the key to surpass this pandemic.
Asunto(s)
Infecciones Asintomáticas/epidemiología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Epidemias/prevención & control , Pandemias/prevención & control , Aislamiento de Pacientes , Neumonía Viral/diagnóstico , Neumonía Viral/prevención & control , Argentina/epidemiología , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Modelos Teóricos , Neumonía Viral/epidemiologíaRESUMEN
BACKGROUND: Cancer cells evolve and constitute heterogeneous populations that fluctuate in space and time and are subjected to selection generating intratumor heterogeneity. This phenomenon is determined by the acquisition of genetic/epigenetic alterations and their selection over time which has clinical implications on drug resistance. METHODS: DNA extracted from different tumor cell populations (breast carcinomas, cancer cell lines and cellular clones) were analyzed by MS-MLPA. Methylation profiles were used to generate a heterogeneity index to quantify the magnitude of epigenetic heterogeneity in these populations. Cellular clones were obtained from single cells derived of MDA-MB 231 cancer cell lines applying serial limiting dilution method and morphology was analyzed by optical microscopy and flow cytometry. Clones characteristics were examined through cellular proliferation, migration capacity and apoptosis. Heterogeneity index was also calculated from beta values derived from methylation profiles of TCGA tumors. RESULTS: The study of methylation profiles of 23 fresh breast carcinomas revealed heterogeneous allele populations in these tumor pieces. With the purpose to measure the magnitude of epigenetic heterogeneity, we developed an heterogeneity index based on methylation information and observed that all tumors present their own heterogeneity level. Applying the index calculation in pure cancer cell populations such as cancer cell lines (MDA-MB 231, MCF-7, T47D, HeLa and K-562), we also observed epigenetic heterogeneity. In addition, we detected that clones obtained from the MDA-MB 231 cancer cell line generated their own new heterogeneity over time. Using TCGA tumors, we determined that the heterogeneity index correlated with prognostic and predictive factors like tumor size (p = 0.0088), number of affected axillary nodes (p = 0.007), estrogen receptor expression (p < 0.0001) and HER2 positivity (p = 0.0007). When we analyzed molecular subtypes we found that they presented different heterogeneity levels. Interestingly, we also observed that all mentioned tumor cell populations shared a similar Heterogeneity index (HI) mean. CONCLUSIONS: Our results show that each tumor presents a unique epigenetic heterogeneity level, which is associated with prognostic and predictive factors. We also observe that breast tumor subtypes differ in terms of epigenetic heterogeneity, which could serve as a new contribution to understand the different prognosis of these groups.
Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Metilación de ADN/genética , Epigénesis Genética , Adulto , Apoptosis/genética , Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Islas de CpG/genética , Conjuntos de Datos como Asunto , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Regiones Promotoras Genéticas/genéticaRESUMEN
Cross-presentation by MHC class I molecules allows the detection of exogenous antigens by CD8+ T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross-presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC-I trafficking and antigen cross-presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC-I molecules. The knockdown of Rab22a also hampered the cross-presentation of soluble, particulate and T. gondii-associated antigens, but not the endogenous MHC-I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC-I endocytic trafficking, which is crucial for efficient cross-presentation by DCs.
Asunto(s)
Presentación de Antígeno , Proteínas Portadoras/metabolismo , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas Nucleares/metabolismo , Toxoplasma/inmunología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/fisiología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/parasitología , Linfocitos T CD8-positivos/inmunología , Proteínas Portadoras/genética , Reactividad Cruzada , Proteínas de Unión al ADN , Células Dendríticas/parasitología , Endocitosis , Endosomas/metabolismo , Endosomas/parasitología , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fagosomas/metabolismo , Fagosomas/parasitología , Transporte de Proteínas , Proteínas de Unión al ARN , Toxoplasma/fisiología , Vacuolas/metabolismo , Vacuolas/parasitologíaRESUMEN
Cell-penetrating peptides (CPP) are short sequences of cationic amino-acids that show a surprising ability to traverse lipid bilayers. CPP are considered to be some of the most effective vectors to introduce membrane-impermeable cargos into cells, but the molecular basis of the membrane translocation mechanisms and its dependence on relevant membrane physicochemical properties have yet to be fully determined. In this paper we resort to Molecular Dynamics simulations and experiments to investigate how the electrostatic potential across the lipid/water interface affects the insertion of hydrophilic and amphipathic CPP into two-dimensional lipid structures. Simulations are used to quantify the effect of the transmembrane potential on the free-energy profile associated with the transfer of the CPP across a neutral lipid bilayer. It is found that the electrostatic bias has a relatively small effect on the binding of the peptides to the membrane surface, but that it significantly lowers the permeation barrier. A charge compensation mechanism, arising from the segregation of counter-ions while the peptide traverses the membrane, determines the shape and symmetry of the free-energy curves and underlines relevant mechanistic considerations. Langmuir monolayer experiments performed with a variety of amphiphiles model the incorporation of the CPP into the external membrane leaflet. It is shown that the dipole potential of the monolayer controls the extent of penetration of the CPP into the lipid aggregate, to a greater degree than its surface charge.
Asunto(s)
Péptidos de Penetración Celular/química , Membrana Dobles de Lípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Simulación de Dinámica Molecular , Electricidad Estática , Propiedades de Superficie , Termodinámica , Agua/químicaRESUMEN
Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.
Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Exocitosis , Oocitos/citología , Oocitos/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Caballos , Humanos , Metafase , Ratones , Microinyecciones , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5'-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Acrosoma/fisiología , Exocitosis/fisiología , Metabolismo de los Lípidos/fisiología , Proteína de Unión al GTP rab3A/metabolismo , Factor 6 de Ribosilación del ADP , Acrosoma/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/fisiología , Calcio/metabolismo , Células Cultivadas , Diglicéridos/farmacología , Exocitosis/efectos de los fármacos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Immunoblotting , Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/farmacología , Masculino , Microscopía Confocal , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa D/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/fisiología , Fosfolipasas de Tipo C/metabolismoRESUMEN
Acrosomal exocytosis in mammalian sperm is a regulated secretion with unusual characteristics. One of its most striking features is the postfusion loss of the outer acrosomal membrane and the overlying plasma membrane as hybrid vesicles. We have previously reported in human sperm that, by preventing the release of calcium from the acrosome, the exocytic process can be arrested at a stage where the acrosomes are profusely swollen, with invaginations of the outer acrosomal membrane. In this report, we show by transmission electron microcopy swelling with similar characteristics without arresting the exocytic process. Acrosomal swelling was observed when secretion was promoted by pharmacological and physiological inducers of the acrosome reaction that trigger exocytosis by different mechanisms. We show that progesterone- and thapsigargin-induced swelling depended on a calcium influx from the extracellular medium through store-operated calcium channels. However, calcium was dispensable when sperm were stimulated with cAMP analogs. KH7, an inhibitor of the soluble adenylyl cyclase, blocked progesterone-induced swelling. Our results indicate that swelling is a required process for acrosomal exocytosis triggered by activation of an adenylyl cyclase downstream of the opening of store-operated calcium channels.
Asunto(s)
Reacción Acrosómica/fisiología , Canales de Calcio/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal/fisiología , Espermatozoides/fisiología , Adulto , Calcimicina/farmacología , Humanos , Masculino , Progesterona/fisiología , Espermatozoides/efectos de los fármacosRESUMEN
Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.
Asunto(s)
Reacción Acrosómica/fisiología , Acrosoma/metabolismo , Membrana Celular/metabolismo , Exocitosis/fisiología , Acrosoma/química , Animales , Calcio/metabolismo , Membrana Celular/química , Regulación de la Expresión Génica , Cinética , Masculino , Fusión de Membrana/fisiología , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transducción de Señal , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP , Proteínas de Unión al GTP rab3/genética , Proteínas de Unión al GTP rab3/metabolismoRESUMEN
The sperm acrosome reaction is a unique, regulated exocytosis characterized by the secretion of the acrosomal content and the release of hybrid vesicles formed by patches of the outer acrosomal and plasma membranes. In previous reports, we have shown that inward invaginations of the acrosomal membrane delineate ring-shaped membrane microdomains that contact the plasma membrane. We have postulated that the opening and expansion of fusion pores along these rings trigger acrosomal exocytosis. The invaginations of the acrosomal membrane topologically resemble the deformations of the endosomal membrane leading to the assembly of luminal vesicles in multivesicular bodies. In fact, intra-acrosomal vesicles are also formed during acrosomal exocytosis. Endosomal sorting complex required for transport (ESCRT) participates in the organization of membrane microdomains that are invaginated and released as intraluminal vesicles in endosomes. We report here that members of ESCRT I (TSG101), ESCRT III (CHMP4), and the AAA ATPase VPS4 are present in the acrosomal region of the human sperm. Perturbing the function of these factors with antibodies or recombinant proteins inhibited acrosomal exocytosis in permeabilized cells. A similar effect was observed with a dominant-negative mutant of VPS4A cross-linked to a cell-penetrating peptide in nonpermeabilized sperm stimulated with a calcium ionophore. When the function of ESCRTs was inhibited, acrosomes showed abnormal deformation of the acrosomal membrane, and SNARE proteins that participate in acrosomal exocytosis failed to be stabilized in neurotoxin-resistant complexes. However, the growing of membrane invaginations was not blocked, and numerous intra-acrosomal vesicles were observed. These observations indicate that ESCRT-mediated processes are essential for acrosomal secretion, implicating these multifunctional complexes in an exocytic event crucial for sperm-egg fusion.
Asunto(s)
Acrosoma/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Exocitosis , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Masculino , Proteínas SNARE/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismoRESUMEN
Two so-called "secretory Rabs," Rab3 and Rab27, regulate late steps during dense-core vesicle exocytosis in neuroendocrine cells. Sperm contain a single large dense-core granule that is released by regulated exocytosis (termed the acrosome reaction) during fertilization or on exposure to inducers in vitro. Sperm exocytosis uses the same fusion machinery as neurons and neuroendocrine cells, with an additional requirement for active Rab3. Here we show that Rab27 is also required for the acrosome reaction, as demonstrated by the inability of inducers to elicit exocytosis when streptolysin O-permeabilized human sperm were loaded with inhibitory anti-Rab27 antibodies or the Rab27-GTP binding domain of the effector Slac2-b. The levels of GTP-bound Rab27 increased on initiation of exocytosis, as did the proportion of GTP-bound Rab3A. We have developed a fluorescence microscopy-based method for detecting endogenous Rab3A-GTP and Rab27-GTP in the acrosomal region of human sperm. Challenge with an inducer increased the population of cells exhibiting GTP-bound Rabs in this subcellular domain. Interestingly, introducing recombinant Rab27A loaded with GTP-γ-S into sperm elicited a remarkable increase in the number of cells evincing GTP-bound Rab3A. In the converse condition, recombinant Rab3A did not modify the percentage of Rab27-GTP-containing cells. Furthermore, Rab27A-GTP recruited a Rab3 GDP/GTP exchange factor (GEF) activity. Our findings suggest that Rab27/Rab3A constitutes a Rab-GEF cascade in dense-core vesicle exocytosis.
Asunto(s)
Reacción Acrosómica/fisiología , Acrosoma/fisiología , Exocitosis/fisiología , Vesículas Secretoras/fisiología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas , Western Blotting , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Indirecta , Glutatión Transferasa , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Microscopía Fluorescente , Prenilación , Proteínas Recombinantes/metabolismo , Vesículas Secretoras/metabolismo , Sefarosa , Estreptolisinas , Proteínas rab27 de Unión a GTPRESUMEN
Lipid bilayers possess the capacity for self-assembly due to the amphipathic nature of lipid molecules, which have both hydrophobic and hydrophilic regions. When confined, lipid bilayers exhibit astonishing versatility in their forms, adopting diverse shapes that are challenging to observe through experimental means. Exploiting this adaptability, lipid structures motivate the development of bio-inspired mechanomaterials and integrated nanobio-interfaces that could seamlessly merge with biological entities, ultimately bridging the gap between synthetic and biological systems. In this work, we demonstrate how, in numerical simulations of multivesicular bodies, a fascinating evolution unfolds from an initial semblance of order toward states of higher entropy over time. We observe dynamic rearrangements in confined vesicles that reveal unexpected limit shapes of distinct geometric patterns. We identify five structures as the basic building blocks that systematically repeat under various conditions of size and composition. Moreover, we observe more complex and less frequent shapes that emerge in confined spaces. Our results provide insights into the dynamics of multivesicular systems, offering a richer understanding of how confined lipid bodies spontaneously self-organize.
Asunto(s)
Cuerpos Multivesiculares , Cuerpos Multivesiculares/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Entropía , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Cell-penetrating peptides (CPPs) enable the transport of nanoparticles through cell membranes. Using molecular simulations, we conduct an in-depth investigation into the thermodynamic forces governing the passive translocation of CPP-coated nanoparticles across lipid bilayers, contrasting their behavior with that of bare particles to dissect the contribution of the peptides. Our analysis unveils a distinctive two-stage translocation mechanism, where the adsorption energy of the particles overcomes the cost of forming a hydrophilic transmembrane pore. Proper evaluation of the translocation mechanisms is only possible when using two reaction coordinates, in particular, one that explicitly includes the density of the lipids on the binding site of the particle. An analysis of adsorption and activation free energies in terms of a simple kinetic model provides a clearer understanding of the CPP effect. Experimental validation using nonendocytic cells confirms the superior membrane permeation of CPP-coated particles. Our findings have implications for the rational design of more efficient cell-permeating particles.
Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Péptidos de Penetración Celular/química , Membrana Dobles de Lípidos/química , Membrana Celular/química , TermodinámicaRESUMEN
The spermatozoon is a very specialized cell capable of carrying out a limited set of functions with high efficiency. Sperm are then excellent model cells to dissect fundamental processes such as regulated exocytosis. The secretion of the single dense-core granule of mammalian spermatozoa relies on the same highly conserved molecules and goes through the same stages as exocytosis in other types of cells. In this study, we describe the presence of Munc18-1 in human sperm and show that this protein has an essential role in acrosomal exocytosis. We observed that inactivation of endogenous Munc18-1 with a specific antibody precluded the stabilization of trans-SNARE complexes and inhibited acrosomal exocytosis. Addition of recombinant Munc18-1 blocked secretion by sequestering monomeric syntaxin, an effect that was rescued by α-soluble NSF attachment protein. By electron microscopy, we observed that both the anti-Munc18-1 antibody and recombinant Munc18-1 inhibited the docking of the acrosome to the plasma membrane. In conclusion, our results indicate that Munc18-1 plays a key role in the dynamics of trans-SNARE complex assembly and/or stabilization, a process that is necessary for the docking of the outer acrosomal membrane to the plasma membrane and subsequent fusion pore opening.
Asunto(s)
Acrosoma/metabolismo , Membrana Celular/metabolismo , Exocitosis/fisiología , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Acrosoma/ultraestructura , Reacción Acrosómica/fisiología , Anticuerpos/química , Membrana Celular/genética , Humanos , Masculino , Proteínas Munc18/genética , Estabilidad Proteica , Proteínas SNARE/genéticaRESUMEN
Acrosomal exocytosis involves a massive fusion between the outer acrosomal and the plasma membranes of the spermatozoon triggered by stimuli that open calcium channels at the plasma membrane. Diacylglycerol has been implicated in the activation of these calcium channels. Here we report that this lipid promotes the efflux of intraacrosomal calcium and triggers exocytosis in permeabilized human sperm, implying that diacylglycerol activates events downstream of the opening of plasma membrane channels. Furthermore, we show that calcium and diacylglycerol converge in a signaling pathway leading to the production of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Addition of diacylglycerol promotes the PKC-dependent activation of PLD1. Rescue experiments adding phosphatidic acid or PIP(2) and direct measurement of lipid production suggest that both PKC and PLD1 promote PIP(2) synthesis. Inhibition of different steps of the pathway was reverted by adenophostin, an agonist of IP(3)-sensitive calcium channels, indicating that PIP(2) is necessary to keep these channels opened. However, phosphatidic acid, PIP(2), or adenophostin could not trigger exocytosis by themselves, indicating that diacylglycerol must also activate another factor. We found that diacylglycerol and phorbol ester stimulate the accumulation of the GTP-bound form of Rab3A. Together our results indicate that diacylglycerol promotes acrosomal exocytosis by i) maintaining high levels of IP(3) - an effect that depends on a positive feedback loop leading to the production of PIP(2) - and ii) stimulating the activation of Rab3A, which in turn initiates a cascade of protein interactions leading to the assembly of SNARE complexes and membrane fusion.
Asunto(s)
Acrosoma/metabolismo , Diglicéridos/farmacología , Exocitosis/efectos de los fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa D/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos , Agonistas de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Exocitosis/fisiología , Humanos , Masculino , Fusión de Membrana/efectos de los fármacos , Fusión de Membrana/fisiología , Proteínas SNARE/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rab3A/metabolismoRESUMEN
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking.
Asunto(s)
Acrosoma/fisiología , Exocitosis , Proteínas de Unión al GTP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Acrosoma/metabolismo , Acrosoma/ultraestructura , Calcio/farmacología , Calcio/fisiología , Membrana Celular/metabolismo , Humanos , Masculino , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/genética , Permeabilidad , Unión ProteicaRESUMEN
A fundamental feature of eukaryotic cells is the presence of distinct membrane-bound compartments having unique protein and lipid composition. These compartments are interconnected by active trafficking mechanisms that must direct macromolecules to defined locations, and at the same time maintain the protein and lipid composition of each organelle. It is well accepted that Rab proteins play a central role in intracellular transport regulating the recognition, fusion and fission of organelles. However, how the transport is achieved is not completely understood. We propose a model whereby a soluble component in the luminal compartment is transported along different Rab-containing organelles that interact according to the following simple principles: (i) only organelles with the same or compatible Rab membrane domains can fuse; (ii) after fusion, an asymmetric fission occurs producing a tubule and a round-shaped vesicle; and (iii) Rab membrane domains distribute asymmetrically between the two resulting organelles. When this model was tested in a simulation, efficient unidirectional transport was observed, while the compartment identity was preserved. All three principles were absolutely necessary for transport. The model is compatible with Rab association/dissociation dynamics and with Rab conversion. In simulations mimicking a simplified endocytic pathway, soluble and membrane-associated markers were efficiently transported preserving the identity of the interacting compartments.