Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Prenat Diagn ; 44(3): 317-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168862

RESUMEN

OBJECTIVE: To compare the biomechanical properties of fetal preterm membranes (20 + 0 weeks to 30 + 0 weeks) to those of the term (37 + 0 to 41 + 0 weeks). METHOD: Amnion and chorion were manually separated and samples were cut to the required geometry. Rectangular samples with (mode 1) and without (uniaxial) a notch, were tested for tearing energy, critical elongation, and tangent stiffness. Suture retention and inter-suture distance testing investigated the effect of suture placement. RESULTS: From the 15 preterm and 10 term placentas studied, no notable differences were observed in uniaxial testing. Mode 1 fracture testing showed a difference in tearing energy between the preterm and term chorion (0.025 ± 0.005 vs. 0.017 ± 0.005 J/m-1 ; p = 0.027) but not in the amnion (0.030 ± 0.017 vs. 0.029 ± 0.009 J/m-1 ; p = 0.895). Both preterm amnion and chorion showed a higher critical elongation compared with term (1.229 ± 0.057 vs. 1.166 ± 0.046; p = 0.019 and 1.307 ± 0.049 vs. 1.218 ± 0.058; p = 0.012). Preterm amnion had a higher suture retention strength than its term counterpart (0.189 ± 0.065 vs. 0.121 ± 0.031 N; p = 0.023). In inter-suture distance tests, no significant interaction was observed beyond 3 mm, but the preterm chorion showed less interaction at 1-2 mm distances. CONCLUSION: Preterm membranes have equivalent or superior tensile properties to term membranes. The chorion appears to contribute to the mechanical integrity of fetal membranes, particularly in preterm stages.


Asunto(s)
Amnios , Membranas Extraembrionarias , Humanos , Embarazo , Femenino , Recién Nacido , Corion , Placenta
2.
Prenat Diagn ; 44(1): 99-107, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185824

RESUMEN

OBJECTIVE: To estimate stresses and strains in the uterine wall and fetal membranes with single/multi-port fetoscopy, simulating either a percutaneous access or via exteriorized uterus. STUDY DESIGN: Finite element models based on anatomical dimensions, material properties and boundary conditions were created to simulate stresses, strains and displacements on the uterine wall and fetal membranes during simulated fetal surgery either via exteriorized uterus or percutaneous approach, and with one or three cannulas. Clinically, we measured the anatomical layer thickness and cannula entry point displacement in patients undergoing single port percutaneous fetoscopy. RESULTS: Simulations demonstrate that single port percutaneous fetoscopy increases stress on the fetal membranes (+105%, 128 to 262 kPa) and uterine wall (+115%, 0.89 to 1.9 kPa) compared to exteriorized uterine access. Using three ports increases stress by 110% (148 to 312 kPa) on membranes and 113% (1.08 to 2.3 kPa) on uterine wall. Finite Element Method showed 0.75 cm uterine entry point displacement from the cutaneous entry, while clinical measurements demonstrated displacement of more than double (1.69 ± 0.58 cm), suggesting modeled measurements may be underestimations. CONCLUSION: The stresses and strains on the fetal membranes and uterus are double as high when entering percutaneously than via an exteriorized uterus. Based on what can be clinically measured, this may be an underestimation.


Asunto(s)
Cánula , Fetoscopía , Anomalías Urogenitales , Embarazo , Femenino , Humanos , Fetoscopía/métodos , Análisis de Elementos Finitos , Útero/cirugía
3.
Eur Biophys J ; 51(2): 171-184, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34477935

RESUMEN

The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.


Asunto(s)
Corazón Auxiliar
4.
BJOG ; 129(7): 1039-1049, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34865300

RESUMEN

OBJECTIVE: To evaluate the host- and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with the response to polypropylene (PP) mesh. DESIGN: In vivo animal experiment. SETTING: KU Leuven Center for Surgical Technologies. POPULATION: Fourteen parous female Mule sheep. METHODS: P4HB scaffolds were surgically implanted in the posterior vaginal wall of sheep. The comparative PP mesh data were obtained from an identical study protocol performed previously. MAIN OUTCOME MEASURES: Gross necropsy, host response and biomechanical evaluation of explants, and the in vivo P4HB scaffold degradation were evaluated at 60- and 180-days post-implantation. Data are reported as mean ± standard deviation (SD) or standard error of the mean (SEM). RESULTS: Gross necropsy revealed no implant-related adverse events using P4HB scaffolds. The tensile stiffness of the P4HB explants increased at 180-days (12.498 ± 2.66 N/mm SEM [p =0.019]) as compared to 60-days (4.585 ± 1.57 N/mm) post-implantation, while P4HB degraded gradually. P4HB scaffolds exhibited excellent tissue integration with dense connective tissue and a moderate initial host response. P4HB scaffolds induced a significantly higher M2/M1 ratio (1.70 ± 0.67 SD, score 0-4), as compared to PP mesh(0.99 ± 0.78 SD, score 0-4) at 180-days. CONCLUSIONS: P4HB scaffold facilitated a gradual load transfer to vaginal tissue over time. The fully absorbable P4HB scaffold, in comparison to PP mesh, has a favorable host response with comparable load-bearing capacity. If these results are also observed at longer follow-up in-vivo, a clinical study using P4HB for vaginal POP surgery may be warranted to demonstrate efficacy. TWEETABLE ABSTRACT: Degradable vaginal P4HB implant might be a solution for treatment of POP.


Asunto(s)
Polipropilenos , Mallas Quirúrgicas , Animales , Fenómenos Biomecánicos , Femenino , Humanos , Hidroxibutiratos , Ovinos , Mallas Quirúrgicas/efectos adversos , Vagina/cirugía
5.
J Biomech Eng ; 143(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32601661

RESUMEN

in vivo skin characterization methods were shown to be useful in the detection of microstructural alterations of the dermis due to skin diseases. Specifically, the diagnostic potential of skin suction has been widely explored, yet measurement uncertainties prevented so far its application in clinical assessment. In this work, we analyze specific factors influencing the reliability of suction measurements. We recently proposed a novel suction device, called Nimble, addressing the limitations of existing instruments, and applied it in clinical trials quantifying mechanical differences between healthy skin and scars. Measurements were performed with the commercial device Cutometer and with the new device. A set of new suction measurements was carried out on scar tissue and healthy skin, and FE-based inverse analysis was applied to determine corresponding parameters of a hyperelastic-viscoelastic material model. FE simulations were used to rationalize differences between suction protocols and to analyze specific factors influencing the measurement procedure. Tissue stiffness obtained from Cutometer measurements was significantly higher compared to the one from Nimble measurements, which was shown to be associated with the higher deformation levels in the Cutometer and the nonlinear mechanical response of skin. The effect of the contact force exerted on skin during suction measurements was quantified, along with an analysis of the effectiveness of a corresponding correction procedure. Parametric studies demonstrated the inherently higher sensitivity of displacement- over load-controlled suction measurements, thus rationalizing the superior ability of the Nimble to distinguish between tissues.


Asunto(s)
Piel , Adulto , Elasticidad , Humanos , Reproducibilidad de los Resultados
6.
Soft Matter ; 13(37): 6407-6421, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28875212

RESUMEN

In this paper, a discrete random network modelling approach specific to electrospun networks is presented. Owing to the manufacturing process, fibres in these materials systems have an enormous length, as compared to their diameters, and form sparse networks since fibre contact over thickness is limited to a narrow range. Representative volume elements are generated, in which fibres span the entire domain, and a technique is developed to apply computationally favourable periodic boundary conditions despite the initial non-periodicity of the networks. To capture sparsity, a physically motivated method is proposed to distinguish true fibre cross-links, in which mechanical interaction takes place, from mere fibre intersections. The model is exclusively informed by experimentally accessible parameters, demonstrates excellent agreement with the mechanical response of electrospun fibre mats, captures typical microscopic deformation patterns, and provides information on the kinematics of fibres and pores. This ability to address relevant mechanisms of deformation at both micro- and macroscopic length scales, together with the moderate computational cost, render the proposed modelling approach a highly qualified tool for the computer-based design and optimization of electrospun networks.

7.
Soft Matter ; 13(30): 5107-5116, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28492654

RESUMEN

The response of human amnion (HA) and bovine Glisson's capsule (GC) to uniaxial and biaxial tensile loading is analyzed on tissue (∼mm) and collagen fiber (∼µm) length scales. The mechanical behavior of the membranes is rationalized based on a discrete fiber network model that relates model parameters with microstructural features of the tissues. Parameters were first determined for GC based on the quantity and organization of collagen fibers in the tissue. Next, parameters for HA were defined by comparing the microstructures of the two membranes, which differ in fiber organization in that collagen forms µm-thick fiber bundles in GC while 50 nm-thin fibrils constitute the network in HA. The flexural behavior of these structures is phenomenologically represented in the model, indicating that shear forces are transmitted through fibrils within GC bundles, but to a much lesser extent than in a corresponding solid cross section. The model provides excellent predictions of the uniaxial and biaxial mechanical response, as well as of the progressive reorientation of fibers associated with uniaxial loading. The results are particularly relevant since model parameters were not obtained through a fitting procedure of the tissue's tension-stretch curve. Furthermore, simulations of representative in vivo deformation states indicated that a large part of the fibers are expected to be un-crimped under physiological loading conditions. Thus, the crimped shape of collagen fibers in the initial test configuration, and typically observed in histological analyses, might be a consequence of the contraction occurring when membranes are extracted from their environment in the body.

8.
J Biomech Eng ; 138(8)2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27322432

RESUMEN

An extensive multiaxial experimental campaign on the monotonic, time- and history-dependent mechanical response of bovine Glisson's capsule (GC) is presented. Reproducible characteristics were observed such as J-shaped curves in uniaxial and biaxial configurations, large lateral contraction, cyclic tension softening, large tension relaxation, and moderate creep strain accumulation. The substantial influence of the reference state selection on the kinematic response and the tension versus stretch curves is demonstrated and discussed. The parameters of a large-strain viscoelastic constitutive model were determined based on the data of uniaxial tension relaxation experiments. The model is shown to well predict the uniaxial and biaxial viscoelastic responses in all other configurations. GC, the corresponding model, and the experimental protocols are proposed as a useful basis for future studies on the relation between microstructure and tissue functionality and on the factors influencing the mechanical response of soft collagenous membranes.


Asunto(s)
Estructuras Animales/fisiología , Bovinos/fisiología , Tejido Conectivo/fisiología , Colágenos Fibrilares/fisiología , Hígado/fisiología , Modelos Animales , Modelos Biológicos , Animales , Bovinos/anatomía & histología , Fuerza Compresiva/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Dureza/fisiología , Membranas Artificiales , Estrés Mecánico , Resistencia a la Tracción/fisiología , Viscosidad
9.
J Biomech Eng ; 137(6): 061010, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25780908

RESUMEN

The structural and mechanical integrity of amnion is essential to prevent preterm premature rupture (PPROM) of the fetal membrane. In this study, the mechanical response of human amnion to repeated loading and the microstructural mechanisms determining its behavior were investigated. Inflation and uniaxial cyclic tests were combined with corresponding in situ experiments in a multiphoton microscope (MPM). Fresh unfixed amnion was imaged during loading and changes in thickness and collagen orientation were quantified. Mechanical and in situ experiments revealed differences between the investigated configurations in the deformation and microstructural mechanisms. Repeated inflation induces a significant but reversible volume change and is characterized by high energy dissipation. Under uniaxial tension, volume reduction is associated with low energy, unrecoverable in-plane fiber reorientation.


Asunto(s)
Amnios/fisiología , Amnios/ultraestructura , Colágeno/fisiología , Colágeno/ultraestructura , Anisotropía , Módulo de Elasticidad/fisiología , Dureza/fisiología , Humanos , Técnicas In Vitro , Modelos Biológicos , Presión , Estrés Mecánico , Resistencia a la Tracción/fisiología , Viscosidad
10.
Prenat Diagn ; 34(1): 33-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155152

RESUMEN

Measuring the stiffness of the cervix might be useful in the prediction of preterm delivery or successful induction of labor. For that purpose, a variety of methods for quantitative determination of physical properties of the pregnant cervix have been developed. Herein, we review studies on the clinical application of these new techniques. They are based on the quantification of mechanical, optical, or electrical properties associated with increased hydration and loss of organization in collagen structure. Quasi-static elastography determines relative values of stiffness; hence, it can identify differences in deformability. Quasi-static elastography unfortunately cannot quantify in absolute terms the stiffness of the cervix. Also, the current clinical studies did not demonstrate the ability to predict the time point of delivery. In contrast, measurement of maximum deformability of the cervix (e.g. quantified with the cervical consistency index) provided meaningful results, showing an increase in compliance with gestational age. These findings are consistent with aspiration measurements on the pregnant ectocervix, indicating a progressive decrease of stiffness along gestation. Cervical consistency index and aspiration measurements therefore represent promising techniques for quantitative assessment of the biomechanical properties of the cervix.


Asunto(s)
Cuello del Útero/fisiopatología , Complicaciones del Embarazo/fisiopatología , Fenómenos Biomecánicos/fisiología , Elasticidad , Diagnóstico por Imagen de Elasticidad , Femenino , Edad Gestacional , Humanos , Trabajo de Parto Inducido , Embarazo , Nacimiento Prematuro/fisiopatología , Succión
11.
Int Urogynecol J ; 25(4): 499-506, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24146072

RESUMEN

INTRODUCTION AND HYPOTHESIS: A mathematical model to estimate membrane tensions (Mt) at the urogenital hiatus and midpelvis in patients with and without prolapse is proposed. For that purpose the complex structures of the pelvic floor were simplified and, based on assumptions concerning geometry and loading conditions, Laplace's law was used to calculate Mt. The pelvic cavity is represented by an ellipsoid in which the midpelvic and hiatal sections are described by an ellipse. The downwards forces within the pelvis (F(in)) are in equilibrium with the support forces within its walls (F(w)). F(in) is the abdominal pressure (PABD) multiplied by the area A of the ellipse. The force inside the tissues (F(w)) is distributed along the circumference of the ellipse C. The Mt can be approximated as Mt = (PABD.A)/C (N/m). Mt-α accounts for the angle α which describes tissue orientation with respect to the anatomical section and is calculated as Mt-α = Mt/sin(α). METHODS: We conducted a retrospective study on archived magnetic resonance imaging scans (n = 20) and ultrasound images in patients with (n = 50) or without prolapse (n = 50) and measured actual geometrical variables. PABD was measured in patients with and without prolapse (n = 20). RESULTS: Mt at the urogenital hiatus at rest is 0.35 N/cm. They significantly increase with the Valsalva manoeuvre, by a factor of 2.3 (without prolapse) to 3.6 (with prolapse). CONCLUSIONS: Calculated Mt are much lower than what is reported for the abdominal cavity. Prolapse patients have significantly larger Mt, which during the Valsalva manoeuvre increase more than in healthy subjects.


Asunto(s)
Modelos Biológicos , Diafragma Pélvico/fisiología , Prolapso de Órgano Pélvico/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Membrana Mucosa/fisiología , Prolapso de Órgano Pélvico/diagnóstico por imagen , Presión , Estrés Mecánico , Ultrasonografía
12.
J Biomech Eng ; 136(11)2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25171138

RESUMEN

Puncture testing has been applied in several studies for the mechanical characterization of human fetal membrane (FM) tissue, and significant knowledge has been gained from these investigations. When comparing results of mechanical testing (puncture, inflation, and uniaxial tension), we have observed discrepancies in the rupture sequence of FM tissue and significant differences in the deformation behavior. This study was undertaken to clarify these discrepancies. Puncture experiments on FM samples were performed to reproduce previous findings, and numerical simulations were carried out to rationalize particular aspects of membrane failure. The results demonstrate that both rupture sequence and resistance to deformation depend on the samples' fixation. Soft fixation leads to slippage in the clamping, which reduces mechanical loading of the amnion layer and results in chorion rupturing first. Conversely, the stiffer, stronger, and less extensible amnion layer fails first if tight fixation is used. The results provide a novel insight into the interpretation of ex vivo testing as well as in vivo membrane rupture.


Asunto(s)
Membranas Extraembrionarias , Ensayo de Materiales , Fenómenos Mecánicos , Punciones , Fenómenos Biomecánicos , Membranas Extraembrionarias/lesiones , Femenino , Análisis de Elementos Finitos , Humanos , Embarazo , Estrés Mecánico
13.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38952079

RESUMEN

Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. ß-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that ß-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of ß-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, ß-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate ß-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of ß-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.


Asunto(s)
Uniones Adherentes , Células Endoteliales , Células Endoteliales de la Vena Umbilical Humana , Mecanotransducción Celular , Estrés Mecánico , beta Catenina , beta Catenina/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Resistencia al Corte , Vía de Señalización Wnt , Fenómenos Biomecánicos
14.
Biomech Model Mechanobiol ; 23(3): 941-957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351427

RESUMEN

Endothelial cell monolayers line the inner surfaces of blood and lymphatic vessels. They are continuously exposed to different mechanical loads, which may trigger mechanobiological signals and hence play a role in both physiological and pathological processes. Computer-based mechanical models of cells contribute to a better understanding of the relation between cell-scale loads and cues and the mechanical state of the hosting tissue. However, the confluency of the endothelial monolayer complicates these approaches since the intercellular cross-talk needs to be accounted for in addition to the cytoskeletal mechanics of the individual cells themselves. As a consequence, the computational approach must be able to efficiently model a large number of cells and their interaction. Here, we simulate cytoskeletal mechanics by means of molecular dynamics software, generally suitable to deal with large, locally interacting systems. Methods were developed to generate models of single cells and large monolayers with hundreds of cells. The single-cell model was considered for a comparison with experimental data. To this end, we simulated cell interactions with a continuous, deformable substrate, and computationally replicated multistep traction force microscopy experiments on endothelial cells. The results indicate that cell discrete network models are able to capture relevant features of the mechanical behaviour and are thus well-suited to investigate the mechanics of the large cytoskeletal network of individual cells and cell monolayers.


Asunto(s)
Células Endoteliales , Modelos Biológicos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Citoesqueleto/metabolismo , Simulación por Computador , Comunicación Celular , Estrés Mecánico , Fenómenos Biomecánicos
15.
Ann Biomed Eng ; 52(6): 1576-1590, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424309

RESUMEN

Supraphysiological stretches are exploited in skin expanders to induce tissue growth for autologous implants. As pregnancy is associated with large levels of sustained stretch, we investigated whether skin growth occurs in pregnancy. Therefore, we combined a mechanical model of skin and the observations from suction experiments on several body locations of five pregnant women at different gestational ages. The measurements show a continuous increase in stiffness, with the largest change observed during the last trimester. A comparison with numerical simulations indicates that the measured increase in skin stiffness is far below the level expected for the corresponding deformation of abdominal skin. A new set of simulations accounting for growth could rationalize all observations. The predicted amount of tissue growth corresponds to approximately 40% area increase before delivery. The results of the simulations also offered the opportunity to investigate the biophysical cues present in abdominal skin along gestation and to compare them with those arising in skin expanders. Alterations of the skin mechanome were quantified, including tissue stiffness, hydrostatic and osmotic pressure of the interstitial fluid, its flow velocity and electrical potential. The comparison between pregnancy and skin expansion highlights similarities as well as differences possibly influencing growth and remodeling.


Asunto(s)
Modelos Biológicos , Fenómenos Fisiológicos de la Piel , Humanos , Femenino , Embarazo , Adulto , Piel/crecimiento & desarrollo , Abdomen/crecimiento & desarrollo , Abdomen/fisiología , Estrés Mecánico
16.
Artículo en Inglés | MEDLINE | ID: mdl-38489079

RESUMEN

The present study investigates the multiphasic nature of the mechanical behavior of human dermis. Motivated by experimental observations and by consideration of its composition, a quadriphasic model of the dermis is proposed, distinguishing solid matrix components, interstitial fluid and charged constituents moving within the fluid, i.e., anions and cations. Compression and tensile experiments with and without change of osmolarity of the bath are performed to characterize the chemo-mechanical coupling in the dermis. Model parameters are determined through inverse analysis. The computations predict a dominant role of the permeability in the determination of the temporal evolution of the mechanical response of the tissue. In line with the previous studies on other tissues, the analysis shows that an ideal model based on Donnan's equilibrium overestimates the osmotic pressure in skin for the case of very dilute solutions. The quadriphasic model is applied to predict changes in dermal cell environment and therefore alterations in what is called the "mechanome," associated with skin stretch. The simulations indicate that skin deformation causes a variation in several local variables, including in particular the electric field associated with a deformation-induced non-homogeneous distribution of fixed charges.

17.
Biomater Adv ; 156: 213702, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992477

RESUMEN

Human skin equivalents (HSEs) serve as important tools for mechanistic studies with human skin cells, drug discovery, pre-clinical applications in the field of tissue engineering and for skin transplantation on skin defects. Besides the cellular and extracellular matrix (ECM) components used for HSEs, physical constraints applied on the scaffold during HSEs maturation influence tissue organization, functionality, and homogeneity. In this study, we introduce a 3D-printed culture insert that exposes bi-layered HSEs to a static radial constraint through matrix adhesion. We examine the effect of various diameters of the ring-shaped culture insert on the HSE's characteristics and compare them to state-of-the-art unconstrained and planar constrained HSEs. We show that radial matrix constraint of HSEs regulates tissue contraction, promotes fibroblast and matrix organization that is similar to human skin in vivo and improves keratinocyte differentiation, epidermal stratification, and basement membrane formation depending on the culture insert diameter. Together, these data demonstrate that the degree of HSE's contraction is an important design consideration in skin tissue engineering. Therefore, this study can help to mimic various in vivo skin conditions and to increase the control of relevant tissue properties.


Asunto(s)
Queratinocitos , Piel , Humanos , Epidermis , Ingeniería de Tejidos , Membrana Basal
18.
Biomater Adv ; 163: 213933, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38972277

RESUMEN

Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.

19.
Acta Biomater ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009208

RESUMEN

Aging leads to biochemical and biomechanical changes in skin, with biological and functional consequences. Despite extensive literature on skin aging, there is a lack of studies which investigate the maturation of the tissue and connect the microscopic changes in the skin to its macroscopic biomechanical behavior as it evolves over time. The present work addresses this knowledge gap using multiscale characterization of skin in a murine model considering newborn, adult and aged mice. Monotonic uniaxial loading, tension relaxation with change of bath, and loading to failure tests were performed on murine skin samples from different age groups, complemented by inflation experiments and atomic force microscopy indentation measurements. In parallel, skin samples were characterized using histological and biochemical techniques to assess tissue morphology, collagen organization, as well as collagen content and cross-linking. We show that 1-week-old skin differs across nearly all measured parameters from adult skin, showing reduced strain stiffening and tensile strength, a thinner dermis, lower collagen content and altered crosslinking patterns. Surprisingly, adult and aged skin were similar across most biomechanical parameters in the physiologic loading range, while aged skin had lower stiffening behavior at large force values and lower tensile strength. This correlates with altered collagen content and cross-links. Based on a computational model, differences in mechanocoupled stimuli in the skin of the different age groups were calculated, pointing to a potential biological significance of the age-induced biomechanical changes in regulating the local biophysical environment of dermal cells. STATEMENT OF SIGNIFICANCE: Skin microstructure and the emerging mechanical properties change with age, leading to biological, functional and health-related consequences. Despite extensive literature on skin aging, only very limited quantitative data are available on microstructural changes and the corresponding macroscopic biomechanical behavior as they evolve over time. This work provides a wide-range multiscale mechanical characterization of skin of newborn, adult and aged mice, and quantifies microstructural correlations in tissue morphology, collagen content, organization and cross-linking. Remarkably, aged skin retained normal hydration and biomechanical function in the physiological loading range but showed significantly reduced properties at super-physiological loading. Our data show that age-related microstructural differences have a profound effect not only on tissue-level properties but also on the cell-level biophysical environment.

20.
Biomater Adv ; 163: 213938, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959650

RESUMEN

Endothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations. The aged and senescent phenotypes were more fragile to stretch-induced damage. Prominent damage was detected by immunofluorescence and scanning electron microscopy as intercellular and intracellular void formation. Damage increased proportionally to the applied level of deformation and, for the aged and senescent phenotype, induced significant detachment of cells at lower levels of stretch compared to the young counterpart. Based on the phenotypic difference in cell-substrate adhesion of senescent cells indicating more mature focal adhesions, a discrete network model of endothelial cells being stretched was developed. The model showed that the more affine deformation of senescent cells increased their intracellular energy, thus enhancing the tendency for cellular damage and impending detachment. Next to quantifying for the first-time critical levels of endothelial stretch, the present results indicate that young cells are more resilient to deformation and that the fragility of senescent cells may be associated with their stronger adhesion to the substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA