RESUMEN
BACKGROUND: In Pakistan, artesunate (AS) in combination with sulfadoxine-pyrimethamine (SP) is the recommended treatment for uncomplicated Plasmodium falciparum malaria. Monitoring molecular markers of anti-malarial drug resistance is crucial for early detection and containment of parasite resistance to treatment. Currently, no data are available on molecular markers of artemisinin resistance (K13 mutations) in P. falciparum isolates from Pakistan. In this study, the prevalence of mutations associated with SP and artemisinin resistance was estimated in different regions of Pakistan. METHODS: A total of 845 blood samples that were positive for malaria parasites by microscopy or rapid diagnostic test were collected from January 2016 to February 2017 from 16 different sites in Pakistan. Of these samples, 300 were positive for P. falciparum by PCR. Polymorphisms in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by pyrosequencing while polymorphisms in the propeller domain of the pfk13 gene were identified by Sanger sequencing. RESULTS: The prevalence of the PfDHFR 108N and 59R mutations was 100% and 98.8%, respectively, while the prevalence of PfDHFR 50R and 51I mutations was 8.6%. No mutation was observed at PfDHFR position 164. In PfDHPS, the prevalence of mutations at positions 436, 437, and 613 was 9.9%, 45.2%, and 0.4%, respectively. No mutations were found at PfDHPS positions 540 and 581. The prevalence of double PfDHFR mutants (59R + 108N) ranged from 93.8% to 100%, while the prevalence of parasites having the PfDHFR 59R + 108N mutations in addition to the PfDHPS 437G mutation ranged from 9.5% to 83.3% across different regions of Pakistan. Nine non-synonymous and four synonymous mutations were observed in the PfK13 propeller domain, none of which correspond to mutations validated to contribute to artemisinin resistance. CONCLUSION: The absence of the highly resistant PfDHFR/PfDHPS quintuple mutant parasites and the lack of PfK13 mutations associated with artemisinin resistance is consistent with AS + SP being effective in Pakistan.
Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Biomarcadores/análisis , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo , Combinación de Medicamentos , Mutación , Pakistán , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismoRESUMEN
BACKGROUND: Highly sensitive, scalable diagnostic methods are needed to guide malaria elimination interventions. While traditional microscopy and rapid diagnostic tests (RDTs) are suitable for the diagnosis of symptomatic malaria infection, more sensitive tests are needed to screen for low-density, asymptomatic infections that are targeted by interventions aiming to eliminate the entire reservoir of malaria infection in humans. METHODS: A reverse transcription polymerase chain reaction (RT- PCR) was developed for multiplexed detection of the 18S ribosomal RNA gene and ribosomal RNA of Plasmodium falciparum and Plasmodium vivax. Simulated field samples stored for 14 days with sample preservation buffer were used to assess the analytical sensitivity and specificity. Additionally, 1750 field samples from Southeastern Myanmar were tested both by RDT and ultrasensitive RT-PCR. RESULTS: Limits of detection (LoD) were determined under simulated field conditions. When 0.3 mL blood samples were stored for 14 days at 28 °C and 80% humidity, the LoD was less than 16 parasites/mL for P. falciparum and 19.7 copies/µL for P. vivax (using a plasmid surrogate), about 10,000-fold lower than RDTs. Of the 1739 samples successfully evaluated by both ultrasensitive RT-PCR and RDT, only two were RDT positive while 24 were positive for P. falciparum, 108 were positive for P. vivax, and 127 were positive for either P. vivax and/or P. falciparum using ultrasensitive RT-PCR. CONCLUSIONS: This ultrasensitive RT-PCR method is a robust, field-tested screening method that is vastly more sensitive than RDTs. Further optimization may result in a truly scalable tool suitable for widespread surveillance of low-level asymptomatic P. falciparum and P. vivax parasitaemia.
Asunto(s)
Infecciones Asintomáticas , Sangre/parasitología , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , ADN Protozoario/genética , ADN Ribosómico/genética , Humanos , Mianmar , Plasmodium falciparum/genética , Plasmodium vivax/genética , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Sensibilidad y EspecificidadRESUMEN
Introduction: Host gene and protein expression impact susceptibility to clinical malaria, but the balance of immune cell populations, cytokines and genes that contributes to protection, remains incompletely understood. Little is known about the determinants of host susceptibility to clinical malaria at a time when acquired immunity is developing. Methods: We analyzed peripheral blood mononuclear cells (PBMCs) collected from children who differed in susceptibility to clinical malaria, all from a small town in Mali. PBMCs were collected from children aged 4-6 years at the start, peak and end of the malaria season. We characterized the immune cell composition and cytokine secretion for a subset of 20 children per timepoint (10 children with no symptomatic malaria age-matched to 10 children with >2 symptomatic malarial illnesses), and gene expression patterns for six children (three per cohort) per timepoint. Results: We observed differences between the two groups of children in the expression of genes related to cell death and inflammation; in particular, inflammatory genes such as CXCL10 and STAT1 and apoptotic genes such as XAF1 were upregulated in susceptible children before the transmission season began. We also noted higher frequency of HLA-DR+ CD4 T cells in protected children during the peak of the malaria season and comparable levels cytokine secretion after stimulation with malaria schizonts across all three time points. Conclusion: This study highlights the importance of baseline immune signatures in determining disease outcome. Our data suggests that differences in apoptotic and inflammatory gene expression patterns can serve as predictive markers of susceptibility to clinical malaria.
Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Leucocitos Mononucleares , Malaria/genética , Citocinas , Inmunidad AdaptativaRESUMEN
We describe two Malawian adults on successful antiretroviral therapy who experienced frequent malaria episodes after stopping cotrimoxazole prophylaxis. We argue that, in addition to stopping cotrimoxazole, diminished malaria immunity and drug interactions between efavirenz and artemether-lumefantrine may have played a causative role in the recurrent malaria our patients experienced.
Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Terapia Antirretroviral Altamente Activa/métodos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Malaria/diagnóstico , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Adulto , Fármacos Anti-VIH/uso terapéutico , Antimaláricos/uso terapéutico , Interacciones Farmacológicas , Femenino , Humanos , Malaria/tratamiento farmacológico , Persona de Mediana EdadRESUMEN
Malaria infections may be symptomatic, leading to treatment, or "asymptomatic," typically detected through active surveillance, and not leading to treatment. Malaria elimination may require purging both types of infection. Using detection methods with different sensitivities, we conducted a cross-sectional study in two rural communities located along the border between China's Yunnan Province and Myanmar's Shan and Kachin States, to estimate the prevalence of asymptomatic and symptomatic malaria. In Mong Pawk, all infections detected were asymptomatic, and the prevalence of Plasmodium falciparum was 0.3%, 4.3%, 4.0%, and 7.8% by light microscopy, rapid diagnostic test (RDT), conventional polymerase chain reaction (cPCR), and multiplexed real-time PCR (RT-PCR), respectively, and Plasmodium vivax prevalence was 0% by all detection methods. In Laiza, of 385 asymptomatic participants, 2.3%, 4.4%, and 12.2% were positive for P. vivax by microscopy, cPCR, and RT-PCR, respectively, and 2.3% were P. falciparum-positive only by RT-PCR. Of 34 symptomatic participants in Laiza, 32.4% were P. vivax-positive by all detection methods. Factors associated with infection included gender (males higher than females, P = 0.014), and young age group (5-17 age group compared with others, P = 0.0024). Although the sensitivity of microscopy was adequate to detect symptomatic infections, it missed the vast majority (86.5%) of asymptomatic infections. Although molecular detection methods had no advantage over standard microscopy or RDT diagnosis for clinically apparent infections, malaria elimination along the Myanmar-China border will likely require highly sensitive surveillance tools to identify asymptomatic infections and guide targeted screen-and-treat interventions.