Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467434

RESUMEN

Alterations in γ-aminobutyric acid (GABA) have been implicated in sensory differences in individuals with autism spectrum disorder (ASD). Visual signals are initially processed in the retina, and in this study, we explored the hypotheses that the GABA-dependent retinal response to light is altered in individuals with ASD. Light-adapted electroretinograms were recorded from 61 adults (38 males and 23 females; n = 22 ASD) in response to three stimulus protocols: (1) the standard white flash, (2) the standard 30 Hz flickering protocol, and (3) the photopic negative response protocol. Participants were administered an oral dose of placebo, 15 or 30 mg of arbaclofen (STX209, GABAB agonist) in a randomized, double-blind, crossover order before the test. At baseline (placebo), the a-wave amplitudes in response to single white flashes were more prominent in ASD, relative to typically developed (TD) participants. Arbaclofen was associated with a decrease in the a-wave amplitude in ASD, but an increase in TD, eliminating the group difference observed at baseline. The extent of this arbaclofen-elicited shift significantly correlated with the arbaclofen-elicited shift in cortical responses to auditory stimuli as measured by using an electroencephalogram in our prior study and with broader autistic traits measured with the autism quotient across the whole cohort. Hence, GABA-dependent differences in retinal light processing in ASD appear to be an accessible component of a wider autistic difference in the central processing of sensory information, which may be upstream of more complex autistic phenotypes.


Asunto(s)
Trastorno del Espectro Autista , Masculino , Adulto , Femenino , Humanos , Trastorno del Espectro Autista/tratamiento farmacológico , Retina , Electroencefalografía , Ácido gamma-Aminobutírico , Electrorretinografía
2.
J Child Psychol Psychiatry ; 65(6): 862-865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38130022

RESUMEN

Clinical trials of pharmacological candidates targeting the core features of autism have largely failed. This is despite evidence linking differences in multiple neurochemical systems to brain function in autism. While this has in part been explained by the heterogeneity of the autistic population, the field has largely relied upon association studies to link brain chemistry to function. The only way to directly establish that a neurotransmitter or neuromodulator is involved in a candidate brain function is to change it and observe a shift in that function. This experimental approach dominates preclinical neuroscience, but not human studies. There is little direct experimental evidence describing how neurochemical systems modulate information processing in the living human brain. Thus, our understanding of how neurochemical differences contribute to neurodiversity is limited, impeding our ability to translate findings from animal studies into humans. Here, we introduce our 'shiftability' paradigm, an approach to bridge the translational gap in autism research. We provide an overview of the guiding principles and methodologies we use to directly test the hypothesis that neurochemical systems function differently in autistic and non-autistic individuals.


Asunto(s)
Investigación Biomédica Traslacional , Humanos , Trastorno Autístico/fisiopatología , Neurociencias , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Animales , Encéfalo/fisiopatología , Encéfalo/metabolismo
3.
BMC Psychiatry ; 24(1): 319, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658877

RESUMEN

BACKGROUND: The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS: The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS: This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS: This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION: NCT05651126.


Asunto(s)
Trastorno Autístico , Encéfalo , Imagen por Resonancia Magnética , Psilocibina , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Trastorno Autístico/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Estudios de Casos y Controles , Método Doble Ciego , Electroencefalografía , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Psilocibina/uso terapéutico , Psilocibina/farmacología , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Sci Rep ; 14(1): 8393, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600134

RESUMEN

Identifying factors linked to autism traits in the general population may improve our understanding of the mechanisms underlying divergent neurodevelopment. In this study we assess whether factors increasing the likelihood of childhood autism are related to early autistic trait emergence, or if other exposures are more important. We used data from 536 toddlers from London (UK), collected at birth (gestational age at birth, sex, maternal body mass index, age, parental education, parental language, parental history of neurodevelopmental conditions) and at 18 months (parents cohabiting, measures of socio-economic deprivation, measures of maternal parenting style, and a measure of maternal depression). Autism traits were assessed using the Quantitative Checklist for Autism in Toddlers (Q-CHAT) at 18 months. A multivariable model explained 20% of Q-CHAT variance, with four individually significant variables (two measures of parenting style and two measures of socio-economic deprivation). In order to address variable collinearity we used principal component analysis, finding that a component which was positively correlated with Q-CHAT was also correlated to measures of parenting style and socio-economic deprivation. Our results show that parenting style and socio-economic deprivation correlate with the emergence of autism traits at age 18 months as measured with the Q-CHAT in a community sample.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Recién Nacido , Humanos , Preescolar , Lactante , Trastorno Autístico/epidemiología , Padres , Escolaridad , Responsabilidad Parental , Composición Familiar , Trastorno del Espectro Autista/epidemiología
5.
PLoS One ; 19(8): e0308792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39146282

RESUMEN

BACKGROUND: The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS: We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS: Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION: GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Glutatión , Lóbulo Occipital , Humanos , Masculino , Femenino , Glutatión/metabolismo , Glutatión/análisis , Adulto , Lóbulo Occipital/metabolismo , Lóbulo Occipital/diagnóstico por imagen , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Adulto Joven , Espectroscopía de Protones por Resonancia Magnética , Lóbulo Frontal/metabolismo , Estrés Oxidativo , Persona de Mediana Edad , Corteza Prefrontal/metabolismo , Corteza Prefrontal/diagnóstico por imagen
6.
Nat Commun ; 15(1): 16, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331941

RESUMEN

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Asunto(s)
Trastorno Autístico , Recien Nacido Prematuro , Preescolar , Lactante , Adulto , Humanos , Recién Nacido , Encéfalo/patología , Mapeo Encefálico , Imagen por Resonancia Magnética
7.
BMJ Open ; 14(6): e080746, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834317

RESUMEN

INTRODUCTION: Autism is a common neurodevelopmental condition with a complex genetic aetiology that includes contributions from monogenic and polygenic factors. Many autistic people have unmet healthcare needs that could be served by genomics-informed research and clinical trials. The primary aim of the European Autism GEnomics Registry (EAGER) is to establish a registry of participants with a diagnosis of autism or an associated rare genetic condition who have undergone whole-genome sequencing. The registry can facilitate recruitment for future clinical trials and research studies, based on genetic, clinical and phenotypic profiles, as well as participant preferences. The secondary aim of EAGER is to investigate the association between mental and physical health characteristics and participants' genetic profiles. METHODS AND ANALYSIS: EAGER is a European multisite cohort study and registry and is part of the AIMS-2-TRIALS consortium. EAGER was developed with input from the AIMS-2-TRIALS Autism Representatives and representatives from the rare genetic conditions community. 1500 participants with a diagnosis of autism or an associated rare genetic condition will be recruited at 13 sites across 8 countries. Participants will be given a blood or saliva sample for whole-genome sequencing and answer a series of online questionnaires. Participants may also consent to the study to access pre-existing clinical data. Participants will be added to the EAGER registry and data will be shared externally through established AIMS-2-TRIALS mechanisms. ETHICS AND DISSEMINATION: To date, EAGER has received full ethical approval for 11 out of the 13 sites in the UK (REC 23/SC/0022), Germany (S-375/2023), Portugal (CE-085/2023), Spain (HCB/2023/0038, PIC-164-22), Sweden (Dnr 2023-06737-01), Ireland (230907) and Italy (CET_62/2023, CEL-IRCCS OASI/24-01-2024/EM01, EM 2024-13/1032 EAGER). Findings will be disseminated via scientific publications and conferences but also beyond to participants and the wider community (eg, the AIMS-2-TRIALS website, stakeholder meetings, newsletters).


Asunto(s)
Trastorno Autístico , Genómica , Sistema de Registros , Secuenciación Completa del Genoma , Niño , Humanos , Masculino , Trastorno Autístico/genética , Estudios de Cohortes , Europa (Continente) , Estudios Multicéntricos como Asunto , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA