Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 969, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511197

RESUMEN

Climate and tectonics have complex feedback systems which are difficult to resolve and remain controversial. Here we propose a new climate-independent approach to constrain regional Andean surface uplift. 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary frontal-arc lavas from the Andean Plateau are distinctly crustal (>0.705 and <0.5125, respectively) compared to non-plateau arc lavas, which we identify as a plateau discriminant. Strong linear correlations exist between smoothed elevation and 87Sr/86Sr (R2 = 0.858, n = 17) and 143Nd/144Nd (R2 = 0.919, n = 16) ratios of non-plateau arc lavas. These relationships are used to constrain 200 Myr of surface uplift history for the Western Cordillera (present elevation 4200 ± 516 m). Between 16 and 26°S, Miocene to recent arc lavas have comparable isotopic signatures, which we infer indicates that current elevations were attained in the Western Cordillera from 23 Ma. From 23-10 Ma, surface uplift gradually propagated southwards by ~400 km.

2.
Sci Rep ; 7(1): 4612, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676691

RESUMEN

The temporal evolution of slip on surface ruptures during an earthquake is important for assessing fault displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30th October 2016 Mw 6.6 Vettore earthquake (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt. Vettore - Mt. Bove fault system, close to new surface ruptures. We observe a clear temporal and spatial link between our near-field record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface ruptures. Comparison of these datasets illustrates that the observed surface ruptures are the propagation of slip from depth on a surface rupturing (i.e. capable) fault array, as a direct and immediate response to the 30th October earthquake. Large near-field displacement ceased within 6-8 seconds of the origin time, implying that shaking induced gravitational processes were not the primary driving mechanism. We demonstrate that low-cost GNSS is an accurate monitoring tool when installed as custom-made, short-baseline networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA