Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2322077121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172779

RESUMEN

2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.


Asunto(s)
Nucleótidos de Desoxiadenina , Insuficiencia Cardíaca , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Nucleótidos de Desoxiadenina/metabolismo , Animales , Humanos , Función Ventricular , Modelos Cardiovasculares , Contracción Miocárdica/efectos de los fármacos , Miosinas/metabolismo , Sarcómeros/metabolismo , Actomiosina/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Calcio/metabolismo , Cadenas de Markov
2.
J Chem Inf Model ; 64(13): 5232-5241, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38874541

RESUMEN

Discovered in the 1920s, cytochrome bd is a terminal oxidase that has received renewed attention as a drug target since its atomic structure was first determined in 2016. Only found in prokaryotes, we study it here as a drug target for Mycobacterium tuberculosis (Mtb). Most previous drug discovery efforts toward cytochrome bd have involved analogues of the canonical substrate quinone, known as Aurachin D. Here, we report six new cytochrome bd inhibitor scaffolds determined from a computational screen and confirmed on target activity through in vitro testing. These scaffolds provide new avenues for lead optimization toward Mtb therapeutics.


Asunto(s)
Antituberculosos , Inhibidores Enzimáticos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Tuberculosis/tratamiento farmacológico , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Modelos Moleculares , Simulación del Acoplamiento Molecular
3.
PNAS Nexus ; 3(8): pgae279, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108304

RESUMEN

Inherited mutations in human beta-cardiac myosin (M2ß) can lead to severe forms of heart failure. The E525K mutation in M2ß is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2ß subfragment 1 (S1) we found that E525K enhances (threefold) the maximum steady-state actin-activated ATPase activity (k cat) and decreases (eightfold) the actin concentration at which ATPase is one-half maximal (K ATPase). We also found a twofold to fourfold increase in the actin-activated power stroke and phosphate release rate constants at 30 µM actin, which overall enhanced the duty ratio threefold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2ß S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA