Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36712046

RESUMEN

Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move towards the midline (cardiac fusion) to form the primitive heart tube. Along with extrinsic influences such as the adjacent anterior endoderm which are known to be required for cardiac fusion, we previously showed that the platelet-derived growth factor receptor alpha (Pdgfra) is also required. However, an intrinsic mechanism that regulates myocardial movement remains to be elucidated. Here, we uncover an essential intrinsic role in the myocardium for the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway in directing myocardial movement towards the midline. In vivo imaging reveals that in PI3K-inhibited zebrafish embryos myocardial movements are misdirected and slower, while midline-oriented dynamic myocardial membrane protrusions become unpolarized. Moreover, PI3K activity is dependent on and genetically interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.

2.
Elife ; 122023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921445

RESUMEN

Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move toward the midline (cardiac fusion) to form the primitive heart tube. Extrinsic influences such as the adjacent anterior endoderm are known to be required for cardiac fusion. We previously showed however, that the platelet-derived growth factor receptor alpha (Pdgfra) is also required for cardiac fusion (Bloomekatz et al., 2017). Nevertheless, an intrinsic mechanism that regulates myocardial movement has not been elucidated. Here, we show that the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway has an essential intrinsic role in the myocardium directing movement toward the midline. In vivo imaging further reveals midline-oriented dynamic myocardial membrane protrusions that become unpolarized in PI3K-inhibited zebrafish embryos where myocardial movements are misdirected and slower. Moreover, we find that PI3K activity is dependent on and interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Pez Cebra , Animales , Pez Cebra/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Corazón , Miocardio/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo
3.
Methods Mol Biol ; 2438: 133-145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147940

RESUMEN

Visualizing dynamic cellular behaviors using live imaging is critical to the study of cell movement and to the study of cellular and embryonic polarity. Similarly, live imaging can be vital to elucidating the pathology of genetic disorders and diseases. Model systems such as zebrafish, whose in vivo development is accessible to both the microscope and genetic manipulation, are particularly well-suited to the use of live imaging. Here we describe an overall approach to conducting live-imaging experiments with a specific emphasis on investigating cell movements during the early stages of heart development in zebrafish.


Asunto(s)
Corazón , Pez Cebra , Animales , Movimiento Celular , Corazón/diagnóstico por imagen
4.
Dev Cell ; 56(11): 1617-1630.e6, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033756

RESUMEN

Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish. Mechanistically, TNFa from pro-regenerative macrophages induces Tnfrsf1a-mediated AP-1 activity in progenitors to increase regeneration-promoting expression of hdac1 and neurogenesis. This establishes the principle that macrophages directly communicate to spinal progenitor cells via non-developmental signals after injury, providing potential targets for future interventions in the regeneration-deficient spinal cord of mammals.


Asunto(s)
Histona Desacetilasa 1/genética , Neurogénesis/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Regeneración/genética , Médula Espinal/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Animales , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Macrófagos/citología , Macrófagos/metabolismo , RNA-Seq , Transducción de Señal/genética , Análisis de la Célula Individual , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción AP-1/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA