Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Environ Manage ; 352: 119936, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38218164

RESUMEN

Biodiversity loss and climate change have severely impacted ecosystems and livelihoods worldwide, compromising access to food and water, increasing disaster risk, and affecting human health globally. Nature-based Solutions (NbS) have gained interest in addressing these global societal challenges. Although much effort has been directed to NbS in urban and terrestrial environments, the implementation of NbS in marine and coastal environments (blue NbS) lags. The lack of a framework to guide decision-makers and practitioners through the initial planning stages appears to be one of the main obstacles to the slow implementation of blue NbS. To address this, we propose an integrated conceptual framework, built from expert knowledge, to inform the selection of the most appropriate blue NbS based on desired intervention objectives and social-ecological context. Our conceptual framework follows a four incremental steps structure: Step 1 aims to identify the societal challenge(s) to address; Step 2 highlights ecosystem services and the underlying biodiversity and ecological functions that could contribute to confronting the societal challenge(s); Step 3 identify the specific environmental context the intervention needs to be set within (e.g. the spatial scale the intervention will operate within, the ecosystem's vulnerability to stressors, and its ecological condition); and Step 4 provides a selection of potential blue NbS interventions that would help address the targeted societal challenge(s) considering the context defined through Step 3. Designed to maintain, enhance, recover, rehabilitate, or create ecosystem services by supporting biodiversity, the blue NbS intervention portfolio includes marine protection (i.e., fully, highly, lightly, and minimally protected areas), restorative activities (i.e., active, passive, and partial restoration; rehabilitation of ecological function and ecosystem creation), and other management measures (i.e., implementation and enforcement of regulation). Ultimately, our conceptual framework guides decision-makers toward a versatile portfolio of interventions that cater to the specific needs of each ecosystem rather than imposing a rigid, one-size-fits-all model. In the future, this framework needs to integrate socio-economic considerations more comprehensively and be kept up-to-date by including the latest scientific information.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Cambio Climático
2.
Sensors (Basel) ; 16(9)2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27589770

RESUMEN

The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

3.
Sensors (Basel) ; 14(6): 9471-88, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24871989

RESUMEN

The current generation of Mobile Mapping Systems (MMSs) capture high density spatial data in a short time-frame. The quantity of data is difficult to predict as there is no concrete understanding of the point density that different scanner configurations and hardware settings will exhibit for objects at specific distances. Obtaining the required point density impacts survey time, processing time, data storage and is also the underlying limit of automated algorithms. This paper details a novel method for calculating point and profile information for terrestrial MMSs which are required for any point density calculation. Through application of algorithms utilising 3D surface normals and 2D geometric formulae, the theoretically optimal profile spacing and point spacing are calculated on targets. Both of these elements are a major factor in calculating point density on arbitrary objects, such as road signs, poles or buildings-all important features in asset management surveys.

4.
Water Sci Technol ; 70(3): 464-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25098876

RESUMEN

Traditional on-site wastewater treatment systems have proven to be unsuitable in areas of low permeability subsoils, representing a risk to human health and the environment. With large areas being covered by low permeability tills, Ireland needs to consider alternative treatment and disposal options to be able to allow further development in these areas and to deal with polluting legacy sites. The paper describes the development and structure of a geographic information system (GIS)-based decision support toolset to evaluate possible alternative strategies for these sites. The programme takes as its initial input the location of an existing house located in an area of low permeability subsoils. Through a series of interconnected GIS geoprocesses the model outputs appropriate solutions for a site, ranking them in terms of environmental sustainability and cost. However, the final decisions are still dependent on on-site constraints so that each solution is accompanied by an alert message that provides additional information for the user to refine the output list according to the available local site-specific information.


Asunto(s)
Sistemas de Información Geográfica , Suelo , Aguas Residuales , Purificación del Agua/métodos , Composición Familiar , Estudios de Factibilidad , Permeabilidad
5.
Biogeochemistry ; 162(3): 381-408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873378

RESUMEN

Global research is showing that coastal blue carbon ecosystems are vulnerable to climate change driven threats including accelerated sea-level rise and prolonged periods of drought. Furthermore, direct anthropogenic impacts present immediate threats through deterioration of coastal water quality, land reclamation, long-term impact to sediment biogeochemical cycling. These threats will invariably alter the future efficacy of carbon (C) sequestration processes and it is imperative that currently existing blue carbon habitats be protected. Knowledge of underlying biogeochemical, physical and hydrological interactions occurring in functioning blue carbon habitats is essential for developing strategies to mitigate threats, and promote conditions to optimise C sequestration/storage. In this current work, we investigated how sediment geochemistry (0-10 cm depth) responds to elevation, an edaphic factor driven by long-term hydrological regimes consequently exerting control over particle sedimentation rates and vegetation succession. This study was performed in an anthropogenically impacted blue carbon habitat along a coastal ecotone encompassing an elevation gradient transect from intertidal sediments (un-vegetated and covered daily by tidal water), through vegetated salt marsh sediments (periodically covered by spring tides and flooding events), on Bull Island, Dublin Bay. We determined the quantity and distributions of bulk geochemical characteristics in sediments through the elevation gradient, including total organic carbon (TOC), total nitrogen (TN), total metals, silt, clay, and also, 16 individual polyaromatic hydrocarbon's (PAH's) as an indication of anthropogenic input. Elevation measurements for sample sites were determined on this gradient using a LiDAR scanner accompanied by an IGI inertial measurement unit (IMU) on board a light aircraft. Considering the gradient from the Tidal mud zone (T), through the low-mid marsh (M) to the most elevated upper marsh (H), there were significant differences between all zones for many measured environmental variables. The results of significance testing using Kruskal-Wallis analysis revealed, that %C, %N, PAH (µg/g), Mn (mg/kg), TOC:NH4 + and pH are significantly different between all zones on the elevation gradient. The highest values for all these variables exists (excluding pH which followed a reverse trend) in zone H, decreasing in zone M and lowest in the un-vegetated zone T. TC content is 16 fold higher overall in vegetated (3.43 -21.84%) than uninhabited (0.21-0.56%) sediments. TN was over 50 times higher (0.24-1.76%), more specifically increasing in % mass on approach to the upper salt marsh with distance from the tidal flats sediments zone T (0.002-0.05%). Clay and silt distributions were greatest in vegetated sediments, increasing in % content towards upper marsh zones The retention of water, metals, PAHs, mud, chloride ions, NH4 +, PO4 3- and SO4 2- increased with elevated C concentrations, concurrently where pH significantly decreased. Sediments were categorized with respect to PAH contamination where all SM samples were placed in the high polluted category. The results highlight the ability of Blue C sediments to immobilise increasing levels of C, N, and metals, and PAH with over time and with both lateral and vertical expansion. This study provides a valuable data set for an anthropogenically impacted blue carbon habitat predicted to suffer from sea-level rise and exponential urban development. Graphical abstract: Summarized results from this study demonstrating the geochemical changes through an elevation gradient, with a transect encompassing intertidal sediments through supratidal salt marsh sediments within Bull Island's blue carbon lagoon zones. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-022-00974-0.

6.
Biogeochemistry ; 162(3): 359-380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873379

RESUMEN

Coastal wetlands are highly efficient 'blue carbon' sinks which contribute to mitigating climate change through the long-term removal of atmospheric CO2 and capture of carbon (C). Microorganisms are integral to C sequestration in blue carbon sediments and face a myriad of natural and anthropogenic pressures yet their adaptive responses are poorly understood. One such response in bacteria is the alteration of biomass lipids, specifically through the accumulation of polyhydroxyalkanoates (PHAs) and alteration of membrane phospholipid fatty acids (PLFA). PHAs are highly reduced bacterial storage polymers that increase bacterial fitness in changing environments. In this study, we investigated the distribution of microbial PHA, PLFA profiles, community structure and response to changes in sediment geochemistry along an elevation gradient from intertidal to vegetated supratidal sediments. We found highest PHA accumulation, monomer diversity and expression of lipid stress indices in elevated and vegetated sediments where C, nitrogen (N), PAH and heavy metals increased, and pH was significantly lower. This was accompanied by a reduction in bacterial diversity and a shift to higher abundances of microbial community members favouring complex C degradation. Results presented here describe a connection between bacterial PHA accumulation, membrane lipid adaptation, microbial community composition and polluted C rich sediments. Graphical Abstract: Geochemical, microbiological and polyhydroxyalkanoate (PHA) gradient in a blue carbon zone. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-022-01008-5.

7.
Data Brief ; 47: 108924, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36798595

RESUMEN

The long-term provision of ocean ecosystem services depends on healthy ecosystems and effective sustainable management. Understanding public opinion about marine and coastal ecosystems is important to guide decision-making and inform specific actions. However, available data on public perceptions on the interlinked effects of climate change, human impacts and the value and management of marine and coastal ecosystems are rare. This dataset presents raw data from an online, self-administered, public awareness survey conducted between November 2021 and February 2022 which yielded 709 responses from 42 countries. The survey was released in four languages (English, French, Spanish and Italian) and consisted of four main parts: (1) perceptions about climate change; (2) perceptions about the value of, and threats to, coasts, oceans and their wildlife, (3) perceptions about climate change response; and (4) socio-demographic information. Participation in the survey was voluntary and all respondents provided informed consent after reading a participant information form at the beginning of the survey. Responses were anonymous unless respondents chose to provide contact information. All identifying information has been removed from the dataset. The dataset can be used to conduct quantitative analyses, especially in the area of public perceptions of the interlinkages between climate change, human impacts and options for sustainable management in the context of marine and coastal ecosystems. The dataset is provided with this article, including a copy of the survey and participant information forms in all four languages, data and the corresponding codebook.

8.
Curr Med Res Opin ; 33(12): 2153-2159, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28857619

RESUMEN

BACKGROUND AND AIMS: Elastomeric pumps are widely used to facilitate ambulatory chemotherapy, and studies have shown that they are safe and well received by patients. Despite these advantages, their end of infusion time can fluctuate significantly. The aim of this research was to observe the performance of these pumps in real practice and to evaluate patients' satisfaction. METHODS: This was a two-phase study conducted at three cancer units over 6 months. Phase-1 was an observational study recording the status of pumps at the scheduled disconnection time and noting remaining volume of infusion. Phase-2 was a survey of patients and their perception/satisfaction. Ethical approval was granted. RESULTS: A total of 92 cases were observed covering 50 cases disconnected at hospital and 42 disconnected at home. The infusion in 40% of hospital disconnection cases was slow, with patients arriving at hospital with unfinished pumps; 58% of these had an estimated remaining volume which exceeded 10 mL with 35% exceeded 20 mL. In 73% of these cases, and regardless of the remaining volume, the patient was disconnected and the pump was discarded. CONCLUSIONS: The performance of pumps varied, which affected nurse workload and patients' waiting-times. A smart system is an option to monitor the performance of pumps and to predict their accuracy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Satisfacción del Paciente , Polímeros , Adulto , Anciano , Anciano de 80 o más Años , Elastómeros , Femenino , Humanos , Bombas de Infusión , Masculino , Persona de Mediana Edad
9.
Front Vet Sci ; 3: 81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695698

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease with a high prevalence in dogs. Mesenchymal stem cells (MSCs) have been used to treat humans, dogs, and horses with OA. This report describes a prospective, randomized, blinded, and placebo-controlled clinical efficacy study of intraarticular allogeneic adipose stem cells for the treatment of dogs with OA. Health assessments and measurements of pain and activity impairment were performed at baseline and at selected time points through day 60. The primary outcome variable was the owner Client-Specific Outcome Measurement (CSOM) and secondary measures included veterinary pain on manipulation, veterinary global score, and owner global score. The dogs were treated with either a saline placebo or a single dose of allogeneic adipose-derived MSCs in either one or two joints. Seventy-four dogs were statistically analyzed for efficacy outcomes. Success in the primary outcome variable, CSOM, was statistically improved in the treated dogs compared to the placebo dogs (79.2 versus 55.4%, p = 0.029). The veterinary pain on manipulation score (92.8 versus 50.2%, p = 0.017) and the veterinary global score (86.9 versus 30.8%, p = 0.009) were both statistically improved in treated dogs compared to placebo. There was no detected significant difference between treated and placebo dogs in the incidence of adverse events or negative health findings. Allogeneic adipose-derived stem cell treatment was shown to be efficacious compared to placebo. This large study of dogs also provides valuable animal clinical safety and efficacy outcome data to our colleagues developing human stem cell therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA