RESUMEN
CONTEXT.: Ex vivo microscopy encompasses a range of techniques to examine fresh or fixed tissue with microscopic resolution, eliminating the need to embed the tissue in paraffin or produce a glass slide. One such technique is light-sheet microscopy, which enables rapid 3D imaging. Our pathology-engineering collaboration has resulted in an open-top light-sheet (OTLS) microscope that is specifically tailored to the needs of pathology practice. OBJECTIVE.: To present an image atlas of OTLS images of prostate core needle biopsies. DESIGN.: Core needle biopsies (N = 9) were obtained from fresh radical prostatectomy specimens. Each biopsy was fixed in formalin, dehydrated in ethanol, stained with TO-PRO3 and eosin, optically cleared, and imaged using OTLS microscopy. The biopsies were then processed, paraffin embedded, and sectioned. Hematoxylin-eosin and immunohistochemical staining for cytokeratin 5 and cytokeratin 8 was performed. RESULTS.: Benign and neoplastic histologic structures showed high fidelity between OTLS and traditional light microscopy. OTLS microscopy had no discernible effect on hematoxylin-eosin or immunohistochemical staining in this pilot study. The 3D histology information obtained using OTLS microscopy enabled new structural insights, including the observation of cribriform and well-formed gland morphologies within the same contiguous glandular structures, as well as the continuity of poorly formed glands with well-formed glands. CONCLUSIONS.: Three-dimensional OTLS microscopy images have a similar appearance to traditional hematoxylin-eosin histology images, with the added benefit of useful 3D structural information. Further studies are needed to continue to document the OTLS appearance of a wide range of tissues and to better understand 3D histologic structures.
Asunto(s)
Biopsia con Aguja Gruesa , Imagenología Tridimensional/métodos , Microscopía/métodos , Próstata/patología , Colorantes , Eosina Amarillenta-(YS) , Hematoxilina , Humanos , Inmunohistoquímica , Masculino , Microscopía/instrumentación , Prostatectomía , Neoplasias de la Próstata/patología , Coloración y Etiquetado/métodosRESUMEN
Recent advances in optical clearing and light-sheet microscopy have provided unprecedented access to structural and molecular information from intact tissues. However, current light-sheet microscopes have imposed constraints on the size, shape, number of specimens, and compatibility with various clearing protocols. Here we present a multi-immersion open-top light-sheet microscope that enables simple mounting of multiple specimens processed with a variety of clearing protocols, which will facilitate wide adoption by preclinical researchers and clinical laboratories. In particular, the open-top geometry provides unsurpassed versatility to interface with a wide range of accessory technologies in the future.
Asunto(s)
Microscopía Fluorescente/métodos , Animales , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Ganglios Linfáticos/diagnóstico por imagen , Masculino , Ratones , Microscopía Fluorescente/instrumentación , Próstata/diagnóstico por imagenRESUMEN
For the 1.7 million patients per year in the U.S. who receive a new cancer diagnosis, treatment decisions are largely made after a histopathology exam. Unfortunately, the gold standard of slide-based microscopic pathology suffers from high inter-observer variability and limited prognostic value due to sampling limitations and the inability to visualize tissue structures and molecular targets in their native 3D context. Here, we show that an open-top light-sheet microscope optimized for non-destructive slide-free pathology of clinical specimens enables the rapid imaging of intact tissues at high resolution over large 2D and 3D fields of view, with the same level of detail as traditional pathology. We demonstrate the utility of this technology for various applications: wide-area surface microscopy to triage surgical specimens (with ~200 µm surface irregularities), rapid intraoperative assessment of tumour-margin surfaces (12.5 sec/cm2), and volumetric assessment of optically cleared core-needle biopsies (1 mm in diameter, 2 cm in length). Light-sheet microscopy can be a versatile tool for both rapid surface microscopy and deep volumetric microscopy of human specimens.