Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 45(1): 60-73, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27396958

RESUMEN

Durable antibody production after vaccination or infection is mediated by long-lived plasma cells (LLPCs). Pathways that specifically allow LLPCs to persist remain unknown. Through bioenergetic profiling, we found that human and mouse LLPCs could robustly engage pyruvate-dependent respiration, whereas their short-lived counterparts could not. LLPCs took up more glucose than did short-lived plasma cells (SLPCs) in vivo, and this glucose was essential for the generation of pyruvate. Glucose was primarily used to glycosylate antibodies, but glycolysis could be promoted by stimuli such as low ATP levels and the resultant pyruvate used for respiration by LLPCs. Deletion of Mpc2, which encodes an essential component of the mitochondrial pyruvate carrier, led to a progressive loss of LLPCs and of vaccine-specific antibodies in vivo. Thus, glucose uptake and mitochondrial pyruvate import prevent bioenergetic crises and allow LLPCs to persist. Immunizations that maximize these plasma cell metabolic properties might thus provide enduring antibody-mediated immunity.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Glucosa/metabolismo , Mitocondrias/metabolismo , Células Plasmáticas/inmunología , Ácido Pirúvico/metabolismo , Animales , Transporte Biológico Activo , Respiración de la Célula , Células Cultivadas , Glicosilación , Humanos , Inmunoglobulinas/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Estrés Fisiológico/inmunología
2.
J Biol Chem ; 298(2): 101554, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973337

RESUMEN

The mitochondrial pyruvate carrier (MPC) is an inner mitochondrial membrane complex that plays a critical role in intermediary metabolism. Inhibition of the MPC, especially in liver, may have efficacy for treating type 2 diabetes mellitus. Herein, we examined the antidiabetic effects of zaprinast and 7ACC2, small molecules which have been reported to act as MPC inhibitors. Both compounds activated a bioluminescence resonance energy transfer-based MPC reporter assay (reporter sensitive to pyruvate) and potently inhibited pyruvate-mediated respiration in isolated mitochondria. Furthermore, zaprinast and 7ACC2 acutely improved glucose tolerance in diet-induced obese mice in vivo. Although some findings were suggestive of improved insulin sensitivity, hyperinsulinemic-euglycemic clamp studies did not detect enhanced insulin action in response to 7ACC2 treatment. Rather, our data suggest acute glucose-lowering effects of MPC inhibition may be due to suppressed hepatic gluconeogenesis. Finally, we used reporter sensitive to pyruvate to screen a chemical library of drugs and identified 35 potentially novel MPC modulators. Using available evidence, we generated a pharmacophore model to prioritize which hits to pursue. Our analysis revealed carsalam and six quinolone antibiotics, as well as 7ACC1, share a common pharmacophore with 7ACC2. We validated that these compounds are novel inhibitors of the MPC and suppress hepatocyte glucose production and demonstrated that one quinolone (nalidixic acid) improved glucose tolerance in obese mice. In conclusion, these data demonstrate the feasibility of therapeutic targeting of the MPC for treating diabetes and provide scaffolds that can be used to develop potent and novel classes of MPC inhibitors.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Obesidad , Quinolonas , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Glucosa/metabolismo , Ratones , Ratones Obesos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ácido Pirúvico/metabolismo , Quinolonas/farmacología
3.
Mo Med ; 120(5): 354-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841572

RESUMEN

Cardiac hypertrophy and heart failure involve a number of metabolic alterations. Human genetic mutations and murine genetic deficiency models of metabolic enzymes or transporters largely suggest that these alterations in metabolism are maladaptive and contribute to the cardiac remodeling and dysfunction. Here, we discuss insights into metabolic alterations identified in cardiac hypertrophy and failure, as well as dietary and pharmacologic therapies that counteract these metabolic alterations and have been shown to significantly improve heart failure.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Animales , Ratones , Insuficiencia Cardíaca/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Metabolismo Energético
4.
J Physiol ; 600(8): 1825-1837, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307840

RESUMEN

Hepatic stellate cells (HSCs) comprise a minor cell population in the liver but serve numerous critical functions in the normal liver and in response to injury. HSCs are primarily known for their activation upon liver injury and for producing the collagen-rich extracellular matrix in liver fibrosis. In the absence of liver injury, HSCs reside in a quiescent state, in which their main function appears to be the storage of retinoids or vitamin A-containing metabolites. Less appreciated functions of HSCs include amplifying the hepatic inflammatory response and expressing growth factors that are critical for liver development and both the initiation and termination of liver regeneration. Recent single-cell RNA sequencing studies have corroborated earlier studies indictaing that HSC activation involves a diverse array of phenotypic alterations and identified unique HSC populations. This review serves to highlight these many functions of HSCs, and to briefly describe the recent genetic tools that will help to thoroughly investigate the role of HSCs in hepatic physiology and pathology.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Células Cultivadas , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo
5.
J Biol Chem ; 296: 100807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34022222

RESUMEN

Insulin sensitizers and incretin mimetics are antidiabetic agents with vastly different mechanisms of action. Thiazolidinedione (TZD) insulin sensitizers are associated with weight gain, whereas glucagon-like peptide-1 receptor agonists can induce weight loss. We hypothesized that combination of a TZD insulin sensitizer and the glucagon-like peptide-1 receptor agonist liraglutide would more significantly improve mouse models of diabetes and nonalcoholic steatohepatitis (NASH). Diabetic db/db and MS-NASH mice were treated with the TZD MSDC-0602K by oral gavage, liraglutide (Lira) by s.c. injection, or combination 0602K+Lira. Lira slightly reduced body weight and modestly improved glycemia in db/db mice. Comparatively, 0602K-treated and 0602K+Lira-treated mice exhibited slight weight gain but completely corrected glycemia and improved glucose tolerance. 0602K reduced plasma insulin, whereas Lira further increased the hyperinsulinemia of db/db mice. Surprisingly, 0602K+Lira treatment reduced plasma insulin and C-peptide to the same extent as mice treated with 0602K alone. 0602K did not reduce glucose-stimulated insulin secretion in vivo, or in isolated islets, indicating the reduced insulinemia was likely compensatory to improved insulin sensitivity. In MS-NASH mice, both 0602K or Lira alone improved plasma alanine aminotransferase and aspartate aminotransferase, as well as liver histology, but more significant improvements were observed with 0602K+Lira treatment. 0602K or 0602K+Lira also increased pancreatic insulin content in both db/db and MS-NASH mice. In conclusion, MSDC-0602K corrected glycemia and reduced insulinemia when given alone, or in combination with Lira. However, 0602K+Lira combination more significantly improved glucose tolerance and liver histology, suggesting that this combination treatment may be an effective therapeutic strategy for diabetes and NASH.


Asunto(s)
Acetofenonas/uso terapéutico , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Liraglutida/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Animales , Quimioterapia Combinada , Femenino , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
6.
J Biol Chem ; 295(40): 13753-13768, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32727846

RESUMEN

The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.


Asunto(s)
Restricción Calórica , Ayuno , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Hígado/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Gluconeogénesis/genética , Hepatocitos/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/citología , Ratones , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (GTP)/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Transducción de Señal/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G262-G269, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34287090

RESUMEN

Iron accumulation is frequently associated with chronic liver diseases. However, our knowledge on how iron contributes to the liver injury is limited. Aberrant Wnt/ß-catenin signaling is a hallmark of several hepatic pathologies. We recently reported that peroxisome proliferator-activated receptor α (PPARα) agonist, fenofibrate, prevents iron-induced oxidative stress and ß-catenin signaling by chelating the iron. Sirtuin3 (Sirt3), a type of NAD+-dependent deacetylase, that plays a critical role in metabolic regulation was found to prevent ischemia reperfusion injury (IRI) by normalizing the Wnt/ß-catenin pathway. In the present study, we explored if fenofibrate prevents iron-induced liver injury by regulating the Sirt3 and ß-catenin signaling. In vitro and in vivo iron treatment resulted in the downregulation of PPARα, Sirt3, active ß-catenin, and its downstream target gene c-Myc in the mouse liver. Pharmacological activation of Sirt3, both in vitro and in vivo, by Honokiol (HK), a known activator of Sirt3, abrogated the inhibitory effect of iron overload on active ß-catenin expression and prevented the iron-induced upregulation of α smooth muscle actin (αSMA) and TGFß expression. Intrinsically, PPARα knockout mice showed significant downregulation of hepatic Sirt3 levels. In addition, treatment of iron overload mice with PPARα agonist fenofibrate reduced hepatic iron accumulation and prevented iron-induced downregulation of liver Sirt3 and active ß-catenin, mitigating the progression of fibrosis. Thus, our results establish a novel link between hepatic iron and PPARα, Sirt3, and ß-catenin signaling. Further exploration on the mechanisms by which fenofibrate ameliorates iron-induced liver injury likely has significant therapeutic impact on iron-associated chronic liver diseases.NEW & NOTEWORTHY Hepatic intracellular iron accumulation has been implicated in the pathophysiology of chronic liver diseases. In this study, we identified a novel mechanism involved in the progression of fibrosis. Excess iron accumulation in liver caused downregulation of PPARα-Sirt3-Wnt signaling leading to fibrosis. This work has significant translational potential as PPARα agonist fenofibrate could be an attractive therapeutic drug for the treatment of liver disorders associated with iron overload.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Fenofibrato/farmacología , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , PPAR alfa/agonistas , Sirtuina 3/metabolismo , beta Catenina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Complejo Hierro-Dextran , Hígado/enzimología , Hígado/patología , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sirtuina 3/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt
8.
Liver Transpl ; 27(1): 116-133, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916011

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.


Asunto(s)
Trasplante de Hígado , Daño por Reperfusión , Aciltransferasas , Animales , Humanos , Hígado , Ratones , Ratones Endogámicos C57BL
9.
J Biol Chem ; 294(36): 13366-13377, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31324719

RESUMEN

The peptide hormone adropin regulates energy metabolism in skeletal muscle and plays important roles in the regulation of metabolic homeostasis. Besides muscle, the liver has an essential role in regulating glucose homeostasis. Previous studies have reported that treatment of diet-induced obese (DIO) male mice with adropin34-76 (the putative secreted domain) reduces fasting blood glucose independently of body weight changes, suggesting that adropin suppresses glucose production in the liver. Here, we explored the molecular mechanisms underlying adropin's effects on hepatic glucose metabolism in DIO mice. Male DIO B6 mice maintained on a high-fat diet received five intraperitoneal injections of adropin34-76 (450 nmol/kg/injection) over a 48-h period. We found that adropin34-76 enhances major intracellular signaling activities in the liver that are involved in insulin-mediated regulation of glucose homeostasis. Moreover, treatment with adropin34-76 alleviated endoplasmic reticulum stress responses and reduced activity of c-Jun N-terminal kinase in the liver, explaining the enhanced activities of hepatic insulin signaling pathways observed with adropin34-76 treatment. Furthermore, adropin34-76 suppressed cAMP activated protein kinase A (PKA) activities, resulting in reduced phosphorylation of inositol trisphosphate receptor, which mediates endoplasmic reticulum calcium efflux, and of cAMP-responsive element-binding protein, a key transcription factor in hepatic regulation of glucose metabolism. Adropin34-76 directly affected liver metabolism, decreasing glucose production and reducing PKA-mediated phosphorylation in primary mouse hepatocytes in vitro Our findings indicate that major hepatic signaling pathways contribute to the improved glycemic control achieved with adropin34-76 treatment in situations of obesity.


Asunto(s)
Modelos Animales de Enfermedad , Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/química , Obesidad/metabolismo , Animales , Dieta Alta en Grasa , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Transducción de Señal
10.
FASEB J ; 33(1): 652-667, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028636

RESUMEN

Lipin 1 regulates glycerolipid homeostasis by acting as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride-synthesis pathway and by regulating transcription factor activity. Mutations in human lipin 1 are a common cause of recurrent rhabdomyolysis in children. Mice with constitutive whole-body lipin 1 deficiency have been used to examine mechanisms connecting lipin 1 deficiency to myocyte injury. However, that mouse model is confounded by lipodystrophy not phenocopied in people. Herein, 2 muscle-specific mouse models were studied: 1) Lpin1 exon 3 and 4 deletion, resulting in a hypomorphic protein without PAP activity, but which preserved transcriptional coregulatory function; and 2) Lpin1 exon 7 deletion, resulting in total protein loss. In both models, skeletal muscles exhibited a chronic myopathy with ongoing muscle fiber necrosis and regeneration and accumulation of phosphatidic acid and, paradoxically, diacylglycerol. Additionally, lipin 1-deficient mice had abundant, but abnormal, mitochondria likely because of impaired autophagy. Finally, these mice exhibited increased plasma creatine kinase following exhaustive exercise when unfed. These data suggest that mice lacking lipin 1-mediated PAP activity in skeletal muscle may serve as a model for determining the mechanisms by which lipin 1 deficiency leads to myocyte injury and for testing potential therapeutic approaches.-Schweitzer, G. G., Collier, S. L., Chen, Z., McCommis, K. S., Pittman, S. K., Yoshino, J., Matkovich, S. J., Hsu, F.-F., Chrast, R., Eaton, J. M., Harris, T. E., Weihl, C. C., Finck, B. N. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Músculo Esquelético/patología , Enfermedades Musculares/patología , Proteínas Nucleares/fisiología , Fosfatidato Fosfatasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Autofagia , Femenino , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/fisiología
11.
J Lipid Res ; 60(3): 528-538, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30610082

RESUMEN

During prolonged fasting, the liver plays a central role in maintaining systemic energy homeostasis by producing glucose and ketones in processes fueled by oxidation of fatty acids liberated from adipose tissue. In mice, this is accompanied by transient hepatic accumulation of glycerolipids. We found that the hepatic expression of monoacylglycerol acyltransferase 1 (Mogat1), an enzyme with monoacylglycerol acyltransferase (MGAT) activity that produces diacyl-glycerol from monoacylglycerol, was significantly increased in the liver of fasted mice compared with mice given ad libitum access to food. Basal and fasting-induced expression of Mogat1 was markedly diminished in the liver of mice lacking the transcription factor PPARα. Suppressing Mogat1 expression in liver and adipose tissue with antisense oligonucleotides (ASOs) reduced hepatic MGAT activity and triglyceride content compared with fasted controls. Surprisingly, the expression of many other PPARα target genes and PPARα activity was also decreased in mice given Mogat1 ASOs. When mice treated with control or Mogat1 ASOs were gavaged with the PPARα ligand, WY-14643, and then fasted for 18 h, WY-14643 administration reversed the effects of Mogat1 ASOs on PPARα target gene expression and liver triglyceride content. In conclusion, Mogat1 is a fasting-induced PPARα target gene that may feed forward to regulate liver PPARα activity during food deprivation.


Asunto(s)
Ayuno , Privación de Alimentos , Hígado/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Tejido Adiposo/metabolismo , Animales , Regulación Enzimológica de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/genética , PPAR alfa/genética , Factores de Tiempo , Triglicéridos/metabolismo
12.
Liver Transpl ; 24(7): 908-921, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29729104

RESUMEN

The prevalence of obesity-associated nonalcoholic fatty liver disease has significantly increased over the past decade, and end-stage liver disease secondary to nonalcoholic steatohepatitis has become 1 of the most common indications for liver transplantation. This both increases the demand for organs and decreases the availability of donor livers deemed suitable for transplantation. Although in the past many steatotic livers were discarded due to concerns over enhanced susceptibility to ischemia/reperfusion injury (IRI) and organ failure, the discrepancy between supply and demand has resulted in increasing use of expanded criteria donor organs including steatotic livers. However, it remains controversial whether steatotic livers can be safely used for transplantation and how best to improve the performance of steatotic grafts. We aimed to evaluate the impact of diet-induced hepatic steatosis in a murine model of IRI. Using a diet of high trans-fat, fructose, and cholesterol (HTF-C) and a diet high in saturated fats, sucrose, and cholesterol (Western diet), we were able to establish models of mixed macrovesicular and microvesicular steatosis (HTF-C) and microvesicular steatosis (Western). We found that the presence of hepatic steatosis, whether it is predominantly macrovesicular or microvesicular, significantly worsens IRI as measured by plasma alanine aminotransferase levels and inflammatory cytokine concentration, and histological evaluation for necrosis. Additionally, we report on a novel finding in which hepatic IRI in the setting of steatosis results in the induction of the necroptosis factors, receptor interacting protein kinase (RIPK) 3, RIPK1, and mixed-lineage kinase domain-like. These data lay the groundwork for additional experimentation to test potential therapeutic approaches to limit IRI in steatotic livers by using a genetically tractable system. Liver Transplantation 24 908-921 2018 AASLD.


Asunto(s)
Trasplante de Hígado/efectos adversos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/patología , Daño por Reperfusión/patología , Animales , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Humanos , Hígado/irrigación sanguínea , Hígado/cirugía , Pruebas de Función Hepática , Trasplante de Hígado/normas , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Daño por Reperfusión/etiología , Recolección de Tejidos y Órganos/normas
13.
Hepatology ; 65(5): 1543-1556, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28027586

RESUMEN

Diseases of the liver related to metabolic syndrome have emerged as the most common and undertreated hepatic ailments. The cause of nonalcoholic fatty liver disease is the aberrant accumulation of lipid in hepatocytes, though the mechanisms whereby this leads to hepatocyte dysfunction, death, and hepatic fibrosis are still unclear. Insulin-sensitizing thiazolidinediones have shown efficacy in treating nonalcoholic steatohepatitis (NASH), but their widespread use is constrained by dose-limiting side effects thought to be due to activation of the peroxisome proliferator-activated receptor γ. We sought to determine whether a next-generation thiazolidinedione with markedly diminished ability to activate peroxisome proliferator-activated receptor γ (MSDC-0602) would retain its efficacy for treating NASH in a rodent model. We also determined whether some or all of these beneficial effects would be mediated through an inhibitory interaction with the mitochondrial pyruvate carrier 2 (MPC2), which was recently identified as a mitochondrial binding site for thiazolidinediones, including MSDC-0602. We found that MSDC-0602 prevented and reversed liver fibrosis and suppressed expression of markers of stellate cell activation in livers of mice fed a diet rich in trans-fatty acids, fructose, and cholesterol. Moreover, mice with liver-specific deletion of MPC2 were protected from development of NASH on this diet. Finally, MSDC-0602 directly reduced hepatic stellate cell activation in vitro, and MSDC-0602 treatment or hepatocyte MPC2 deletion also limited stellate cell activation indirectly by affecting secretion of exosomes from hepatocytes. CONCLUSION: Collectively, these data demonstrate the effectiveness of MSDC-0602 for attenuating NASH in a rodent model and suggest that targeting hepatic MPC2 may be an effective strategy for pharmacologic development. (Hepatology 2017;65:1543-1556).


Asunto(s)
Acetofenonas/uso terapéutico , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Acetofenonas/farmacología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Exosomas/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Distribución Aleatoria , Tiazolidinedionas/farmacología
16.
Exp Physiol ; 102(8): 985-999, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28597936

RESUMEN

NEW FINDINGS: What is the central question of this study? The antidiabetic effects of thiazolidinedione (TZD) drugs may be mediated in part by a molecular interaction with the constituent proteins of the mitochondrial pyruvate carrier complex (MPC1 and MPC2). We examined the ability of a mutant mouse strain expressing an N-terminal truncation of MPC2 (Mpc2Δ16 mice) to respond to TZD treatment. What is the main finding and its importance? The response of Mpc2Δ16 mice to TZD treatment was not significantly different from that of wild-type C57BL6/J control animals, suggesting that the 16 N-terminal amino acids of MPC2 are dispensable for the effects of TZD treatment. Rosiglitazone and pioglitazone are thiazolidinedione (TZD) compounds that have been used clinically as insulin-sensitizing drugs and are generally believed to mediate their effects via activation of the peroxisome proliferator-activated receptor Î³ (PPARγ). Recent work has shown that it is possible to synthesize TZD compounds with potent insulin-sensitizing effects and markedly diminished affinity for PPARγ. Both clinically used TZDs and investigational PPARγ-sparing TZDs, such as MSDC-0602, interact with the mitochondrial pyruvate carrier (MPC) and inhibit its activity. The MPC complex is composed of two proteins, MPC1 and MPC2. Herein, we used mice expressing a hypomorphic MPC2 protein missing 16 amino acids in the N-terminus (Mpc2Δ16 mice) to determine the effects of these residues in mediating the insulin-sensitizing effects of TZDs in diet-induced obese mice. We found that both pioglitazone and MSDC-0602 elicited their beneficial metabolic effects, including improvement in glucose tolerance, attenuation of hepatic steatosis, reduction of adipose tissue inflammation and stimulation of adipocyte browning, in both wild-type and Mpc2Δ16 mice after high-fat diet feeding. In addition, truncation of MPC2 failed to attenuate the interaction between TZDs and the MPC in a bioluminescence resonance energy transfer-based assay or to affect the suppression of pyruvate-stimulated respiration in cells. Collectively, these data suggest that the interaction between TZDs and MPC2 is not affected by loss of the N-terminal 16 amino acids nor are these residues required for the insulin-sensitizing effects of these compounds.


Asunto(s)
Insulina/metabolismo , Mitocondrias/metabolismo , Proproteína Convertasa 2/metabolismo , Acetofenonas/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Proteínas de Transporte de Anión , Dieta Alta en Grasa/efectos adversos , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , PPAR gamma/metabolismo , Pioglitazona , Rosiglitazona , Tiazolidinedionas/farmacología
17.
Biochem J ; 466(3): 443-54, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25748677

RESUMEN

Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation-critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Transporte Biológico/fisiología , Predicción , Glucólisis/fisiología , Humanos , Redes y Vías Metabólicas/fisiología , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos
18.
J Lipid Res ; 56(4): 848-58, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25722343

RESUMEN

Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1(-/-) mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1(-/-) mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1(-/-) mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1(-/-) mice were not protected from intrahepatic accumulation of diacylglycerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload.


Asunto(s)
Hígado/enzimología , Proteínas Nucleares/deficiencia , Fosfatidato Fosfatasa/deficiencia , Triglicéridos/metabolismo , Alelos , Animales , Ayuno , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Hepatocitos/metabolismo , Hígado/citología , Hígado/metabolismo , Ratones , Proteínas Nucleares/genética , Especificidad de Órganos , Oxidación-Reducción , Fosfatidato Fosfatasa/genética , Transcripción Genética , Triglicéridos/biosíntesis
19.
Hepatology ; 67(5): 2055-2056, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28317182
20.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071381

RESUMEN

The mitochondrial pyruvate carrier (MPC) plays a role in numerous diseases including neurodegeneration, metabolically dependent cancers, and the development of insulin resistance. Several previous studies in genetic mouse models or with existing inhibitors suggest that inhibition of the MPC could be used as a viable therapeutic strategy in these diseases. However, the MPC's structure is unknown, making it difficult to screen for and develop therapeutically viable inhibitors. Currently known MPC inhibitors would make for poor drugs due to their poor pharmacokinetic properties, or in the case of the thiazolidinediones (TZDs), off-target specificity for peroxisome-proliferator activated receptor gamma (PPARγ) leads to unwanted side effects. In this study, we develop several structural models for the MPC heterodimer complex and investigate the chemical interactions required for the binding of these known inhibitors to MPC and PPARγ. Based on these models, the MPC most likely takes on outward-facing (OF) and inward-facing (IF) conformations during pyruvate transport, and inhibitors likely plug the carrier to inhibit pyruvate transport. Although some chemical interactions are similar between MPC and PPARγ binding, there is likely enough difference to reduce PPARγ specificity for future development of novel, more specific MPC inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA