Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38958032

RESUMEN

Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm x 5 mm x 3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.

2.
PLoS Biol ; 21(11): e3002389, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983289

RESUMEN

The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTß signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Humanos , Animales , Ratones , Infección Persistente , Meninges/metabolismo , Tejido Linfoide/metabolismo , Autoanticuerpos
3.
J Cell Sci ; 135(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022745

RESUMEN

Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in immunofluorescence microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in immunofluorescence images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multiscale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed immunofluorescence images of two targets.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Estructuras Celulares , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente
4.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261525

RESUMEN

Polymicrobial infection with Candida albicans and Staphylococcus aureus may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of S. aureus with C. albicans hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of C. albicans/S. aureus whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form C. albicans in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of C. albicans and S. aureus arise within each biofilm as a result of the different C. albicans morphotypes, resulting in distinct sub-regions. These data reveal that C. albicans cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.


Asunto(s)
Candida albicans , Infecciones Estafilocócicas , Hifa , Staphylococcus aureus , Imagen de Lapso de Tiempo , Biopelículas
5.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289644

RESUMEN

We have developed a tuneable workflow for the study of soil microbes in an imitative 3D soil environment that is compatible with routine and advanced optical imaging, is chemically customisable, and is reliably refractive index matched based on the carbon catabolism of the study organism. We demonstrate our transparent soil pipeline with two representative soil organisms, Bacillus subtilis and Streptomyces coelicolor, and visualise their colonisation behaviours using fluorescence microscopy and mesoscopy. This spatially structured, 3D approach to microbial culture has the potential to further study the behaviour of bacteria in conditions matching their native environment and could be expanded to study microbial interactions, such as competition and warfare.


Asunto(s)
Bacillus subtilis , Carbono , Interacciones Microbianas , Microscopía Fluorescente , Suelo
6.
J Microsc ; 295(2): 121-130, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38296824

RESUMEN

Biofilms are known to be present in tonsils, but little is known about their spatial location and size distribution throughout the tonsil. Studies of the location and distribution of biofilms in tonsil specimens have thus far been limited to either high-magnification methods such as electron microscopy, which enables high-resolution imaging but only from a tiny tissue volume, or lower magnification techniques such as light microscopy, which allow imaging of larger specimens but with poor spatial resolution. To overcome these limitations, we report the use of multimodal optical mesoscopy to visualise and quantify the number and spatial distribution of Gram-positive biofilms in fresh, excised paediatric tonsils. This methodology supports simultaneous imaging of both the tonsil host and biofilms in whole mounts of tissue up to 5 mm × 5 mm × 3 mm with subcellular resolution throughout. A quantitative assessment of 36 tonsil specimens revealed no statistically significant difference between biofilm presence on the tonsil surface and the interior of the tonsil. This new quantitative mesoscale imaging approach may prove useful in understanding the role of biofilms in tonsillar diseases and other infections.


Asunto(s)
Biopelículas , Tonsila Palatina , Tonsila Palatina/microbiología , Humanos , Bacterias Grampositivas/fisiología , Niño , Microscopía/métodos , Preescolar
7.
Opt Lett ; 48(5): 1092-1095, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857221

RESUMEN

Multi-wavelength standing wave (SW) microscopy and interference reflection microscopy (IRM) are powerful techniques that use optical interference to study topographical structure. However, the use of more than two wavelengths to image the complex cell surface results in complicated topographical maps, and it can be difficult to resolve the three-dimensional contours. We present a simple image processing method to reduce the thickness and spacing of antinodal fringes in multi-wavelength interference microscopy by up to a factor of two to produce clearer and more precise topographical maps of cellular structures. We first demonstrate this improvement using model non-biological specimens, and we subsequently demonstrate the benefit of our method for reducing the ambiguity of surface topography and revealing obscured features in live and fixed-cell specimens.

8.
J Microsc ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692253

RESUMEN

We provide a brief review of the development and application of the Mesolens and its impact on microbiology. Microbial specimens such as infected tissue samples, colonies surfaces, and biofilms are routinely collected at the mesoscale. This means that they are relatively large multimillimetre-sized samples which contain microscopic detail that must be observed to answer important questions across various sectors. The Mesolens presents the ideal imaging method to study these specimens as no other optical microscope can thanks to its unique combination of low magnification and high numerical aperture providing large field-of-view, high-resolution imaging. We demonstrate the current applications of the Mesolens to microbial imaging and go on to outline the huge potential of the Mesolens to impact other key areas of microbiology.

9.
J Microsc ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156549

RESUMEN

Standing wave (SW) microscopy is a method that uses an interference pattern to excite fluorescence from labelled cellular structures and produces high-resolution images of three-dimensional objects in a two-dimensional dataset. SW microscopy is performed with high-magnification, high-numerical aperture objective lenses, and while this results in high-resolution images, the field of view is very small. Here we report upscaling of this interference imaging method from the microscale to the mesoscale using the Mesolens, which has the unusual combination of a low-magnification and high-numerical aperture. With this method, we produce SW images within a field of view of 4.4 mm × 3.0 mm that can readily accommodate over 16,000 cells in a single dataset. We demonstrate the method using both single-wavelength excitation and the multi-wavelength SW method TartanSW. We show application of the method for imaging of fixed and living cells specimens, with the first application of SW imaging to study cells under flow conditions.

10.
J Microsc ; 286(3): 201-219, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460574

RESUMEN

Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.


This review discusses the state of the art of an emerging field called mesoscale imaging. Mesoscale imaging refers to the trend towards imaging ever-larger samples that exceed the classic microscopy domain and is also referred to as 'mesoscopic imaging'. In optical imaging, this refers to objects between the microscopic and macroscopic scale that are imaged with subcellular resolution; in practice, this implies the imaging of objects from millimetre up to cm size with µm or nm resolution. As such, the mesoscopy field spans the boundary between classic 'biological' imaging and preclinical 'biomedical' imaging, typically utilising lower magnification objective lenses with a bigger field of view. We discuss the types of samples currently imaged with examples, and highlight how this type of imaging fills the gap between microscopic and macroscopic imaging, allowing further insight into the organisation of tissues in an organism. We also discuss the challenges of imaging such large samples, from sample handling to labelling and optical phenomena that stand in the way of quantitative imaging. Finally, we put the current state of the art into context within the neighbouring fields and outline future developments, such as the use of 'phantom' test samples and artificial intelligence for image analysis that will underpin the quality of mesoscale imaging.


Asunto(s)
Inteligencia Artificial , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía/métodos , Imagen Óptica/métodos , Tomografía/métodos
11.
J Pathol ; 255(1): 62-71, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096621

RESUMEN

Automated image-based assessment of blood films has tremendous potential to support clinical haematology within overstretched healthcare systems. To achieve this, efficient and reliable digital capture of the rich diagnostic information contained within a blood film is a critical first step. However, this is often challenging, and in many cases entirely unfeasible, with the microscopes typically used in haematology due to the fundamental trade-off between magnification and spatial resolution. To address this, we investigated three state-of-the-art approaches to microscopic imaging of blood films which leverage recent advances in optical and computational imaging and analysis to increase the information capture capacity of the optical microscope: optical mesoscopy, which uses a giant microscope objective (Mesolens) to enable high-resolution imaging at low magnification; Fourier ptychographic microscopy, a computational imaging method which relies on oblique illumination with a series of LEDs to capture high-resolution information; and deep neural networks which can be trained to increase the quality of low magnification, low resolution images. We compare and contrast the performance of these techniques for blood film imaging for the exemplar case of Giemsa-stained peripheral blood smears. Using computational image analysis and shape-based object classification, we demonstrate their use for automated analysis of red blood cell morphology and visualization and detection of small blood-borne parasites such as the malarial parasite Plasmodium falciparum. Our results demonstrate that these new methods greatly increase the information capturing capacity of the light microscope, with transformative potential for haematology and more generally across digital pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Sangre/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Aprendizaje Automático , Microscopía/métodos , Humanos
12.
Cell Physiol Biochem ; 55(S4): 35-47, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945241

RESUMEN

BACKGROUND/AIMS: The role of podocytes is well conserved across species from drosophila to teleosts, and mammals. Identifying the molecular markers that actively maintain the integrity of the podocyte will enable a greater understanding of the changes that lead to damage. METHODS: We generated transgenic zebrafish, expressing fluorescent reporters driven by the podocin promoter, for the visualization and isolation of podocytes. We have conducted single cell RNA sequencing (scRNA-seq) on isolated podocytes from a zebrafish reporter line. RESULTS: We demonstrated that the LifeAct-TagRFP-T fluorescent reporter faithfully replicated podocin expression in vivo. We were also able to show spontaneous GCaMP6s fluorescence using light sheet (single plane illumination) microscopy. We identified many podocyte transcripts, encoding proteins related to calcium-binding and actin filament assembly, in common with those expressed in human and mouse mature podocytes. CONCLUSION: We describe the establishment of novel transgenic zebrafish and their use to identify and isolate podocyte cells for the preparation of a scRNA-seq library from normal podocytes. The scRNA-seq data identifies distinct populations of cells and potential gene switching between clusters. These data provide a foundation for future comparative studies and for exploiting the zebrafish as a model for kidney development, disease, injury and repair.


Asunto(s)
Podocitos/metabolismo , ARN Citoplasmático Pequeño/genética , Transcriptoma , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Perfilación de la Expresión Génica
14.
Opt Express ; 24(8): 8149-55, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137254

RESUMEN

We report a synchronously-pumped femtosecond diamond Raman laser operating with a tunable second-Stokes output. Pumped using a mode-locked Ti:sapphire laser at 840-910 nm with a duration of 165 fs, the second-Stokes wavelength was tuneable from 1082 - 1200 nm with sub-picosecond duration. Our results demonstrate potential for cascaded Raman conversion to extend the wavelength coverage of standard laser sources to new regions.

15.
Microsc Microanal ; 22(4): 803-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27492283

RESUMEN

We demonstrate that the second-Stokes output from a diamond Raman laser, pumped by a femtosecond Ti:Sapphire laser, can be used to efficiently excite red-emitting dyes by two-photon excitation at 1,080 nm and beyond. We image HeLa cells expressing red fluorescent protein, as well as dyes such as Texas Red and Mitotracker Red. We demonstrate the potential for simultaneous two-color, two-photon imaging with this laser by using the residual pump beam for excitation of a green-emitting dye. We demonstrate this for the combination of Alexa Fluor 488 and Alexa Fluor 568. Because the Raman laser extends the wavelength range of the Ti:Sapphire laser, resulting in a laser system tunable to 680-1,200 nm, it can be used for two-photon excitation of a large variety and combination of dyes.

16.
Opt Express ; 23(12): 15504-13, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193530

RESUMEN

We report a synchronously-pumped femtosecond diamond Raman laser operating at 890 nm with a slope efficiency of 32%. Pumped using a mode-locked Ti:Sapphire laser at 796 nm with a pulse duration of 194 fs, the bandwidth of the Stokes output was broadened to enable subsequent pulse compression to 65 fs using a prism-pair. Modelling results provide an understanding of the physical mechanisms involved in the Raman conversion of femtosecond pulses, supporting an in-depth characterization of these ultrashort pulsed lasers.

17.
Opt Express ; 23(3): 2375-82, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836105

RESUMEN

We report on the fabrication and diffraction-limited characterization of parabolic focusing micromirrors. Sub-micron beam waists are measured for mirrors with 10-µm radius aperture and measured fixed focal lengths in the range from 24 µm to 36 µm. Optical characterization of the 3D intensity in the near-field produced when the device is illuminated with collimated light is performed using a modified confocal microscope. Results are compared directly with angular spectrum simulations, yielding strong agreement between experiment and theory, and identifying the competition between diffraction and focusing in the regime probed.

18.
Opt Lett ; 40(15): 3484-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258338

RESUMEN

We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 µm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.


Asunto(s)
Dispositivos Ópticos , Imagen Óptica/métodos , Animales , Encéfalo/citología , Ratones , Imagen Óptica/instrumentación
19.
Sci Rep ; 14(1): 8348, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594373

RESUMEN

Single molecule fluorescence in situ hybridisation (smFISH) has become a valuable tool to investigate the mRNA expression of single cells. However, it requires a considerable amount of programming expertise to use currently available open-source analytical software packages to extract and analyse quantitative data about transcript expression. Here, we present FISHtoFigure, a new software tool developed specifically for the analysis of mRNA abundance and co-expression in QuPath-quantified, multi-labelled smFISH data. FISHtoFigure facilitates the automated spatial analysis of transcripts of interest, allowing users to analyse populations of cells positive for specific combinations of mRNA targets without the need for computational image analysis expertise. As a proof of concept and to demonstrate the capabilities of this new research tool, we have validated FISHtoFigure in multiple biological systems. We used FISHtoFigure to identify an upregulation in the expression of Cd4 by T-cells in the spleens of mice infected with influenza A virus, before analysing more complex data showing crosstalk between microglia and regulatory B-cells in the brains of mice infected with Trypanosoma brucei brucei. These analyses demonstrate the ease of analysing cell expression profiles using FISHtoFigure and the value of this new tool in the field of smFISH data analysis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Animales , Ratones , ARN Mensajero/metabolismo , Hibridación Fluorescente in Situ/métodos , Regulación hacia Arriba
20.
Biomed Opt Express ; 15(4): 2224-2237, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633069

RESUMEN

We present the fabrication and implementation of low-cost optical quality 3D printed lenses, and their application as microscope objectives with different prescriptions. The imaging performance of the 3D printed lenses was benchmarked against commercially available optics including a 20 mm focal length 12.7 mm diameter NBK-7 plano-convex lens used as a low magnification objective, and a separate high magnification objective featuring three 6 mm diameter NBK-7 lenses with different positive and negative focal lengths. We describe the design and manufacturing processes to produce high-quality 3D printed lenses. We tested their surface quality using a stylus profilometer, showing that they conform to that of commercial glass counterpart lenses. The 3D printed lenses were used as microscope objectives in both brightfield and epi-fluorescence imaging of specimens including onion, cyanobacteria, and variegated Hosta leaves, demonstrating a sub-cellular resolution performance obtained with low-cost 3D printed optical elements within brightfield and fluorescence microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA