Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 143(43): 17926-17930, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34695360

RESUMEN

The location of aluminum in a zeolite framework structure defines the accessibility and geometry of the catalytically active sites, but determining this location crystallographically is fraught with difficulties. Typical zeolite catalysts contain only a small amount of aluminum, and the X-ray scattering factors for silicon and aluminum are very similar. To address this problem, we have exploited the properties of resonant X-ray powder diffraction across the Al K edge, where the aluminum scattering factor changes dramatically. By combining conventional synchrotron powder diffraction data with those collected at energies near the X-ray absorption edge, aluminum is highlighted. In this way, the different distributions of aluminum in two FER-type zeolites with identical chemical compositions but different catalytic properties could be determined unambiguously. The results are consistent with previous studies, but quantitative. This approach constitutes a major advance in our fundamental understanding of the relationship between zeolite structure and catalytic activity.

2.
J Am Chem Soc ; 141(51): 20155-20165, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31751124

RESUMEN

Organic structure-directing agents (OSDAs) are exploited in the crystallization of microporous materials to tailor the physicochemical properties of the resulting zeolite for applications ranging from separations to catalysis. The rational design of these OSDAs often entails the identification of molecules with a geometry that is commensurate with the channels and cages of the target zeolite structure. Syntheses tend to employ only a single OSDA, but there are a few examples where two or more organics operate synergistically to yield a desired product. Using a combination of state-of-the-art characterization techniques and molecular modeling, we show that the coupling of N,N,N-trimethyl-1,1-adamantammonium and 1,2-hexanediol, each yielding distinct zeolites when used alone, results in the cooperative direction of a third structure, HOU-4, with the mordenite framework type (MOR). Rietveld refinement using synchrotron X-ray diffraction data reveals the spatial arrangement of the organics in the HOU-4 crystals, with amines located in the large channels and alcohols oriented in the side pockets lining the one-dimensional pores. These results are in excellent agreement with molecular dynamics calculations, which predict similar spatial distributions of organics with an energetically favorable packing density that agrees with experimental measurements of OSDA loading, as well as with solid-state two-dimensional 27Al{29Si}, 27Al{1H}, and 13C{1H} NMR correlation spectra, which establish the proximities and interactions of occluded OSDAs. A combination of high-resolution transmission electron microscopy and atomic force microscopy is used to quantify the size of the HOU-4 crystals, which exhibit a platelike morphology, and to index the crystal facets. Our findings reveal that the combined OSDAs work in tandem to produce ultrathin, nonfaulted HOU-4 crystals that exhibit improved catalytic activity for cumene cracking in comparison to mordenite crystals prepared via conventional syntheses. This novel demonstration of cooperativity highlights the potential possibilities for expanding the use of dual structure-directing agents in zeolite synthesis.

3.
Angew Chem Int Ed Engl ; 58(37): 13080-13086, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31347746

RESUMEN

The high-silica zeolite SSZ-27 was synthesized using one of the isomers of the organic structure-directing agent that is known to produce the large-pore zeolite SSZ-26 (CON). The structure of the as-synthesized form was solved using multi-crystal electron diffraction data. Data were collected on eighteen crystals, and to obtain a high-quality and complete data set for structure refinement, hierarchical cluster analysis was employed to select the data sets most suitable for merging. The framework structure of SSZ-27 can be described as a combination of two types of cavities, one of which is shaped like a heart. The cavities are connected through shared 8-ring windows to create straight channels that are linked together in pairs to form a one-dimensional channel system. Once the framework structure was known, molecular modelling was used to find the best fitting isomer, and this, in turn, was isolated to improve the synthesis conditions for SSZ-27.

4.
Angew Chem Int Ed Engl ; 58(19): 6255-6259, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30912601

RESUMEN

The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid-state NMR and synchrotron X-ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al-SSZ-70. Through-covalent-bond 2D 27 Al{29 Si} J-correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large-pore interlayer channels of Al-SSZ-70, while only 6 % are in the sub-nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ-70.

5.
J Am Chem Soc ; 139(46): 16803-16812, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29068208

RESUMEN

The structure of the calcined form of the high-silica zeolite SSZ-70 has been elucidated by combining synchrotron X-ray powder diffraction (XRPD), high-resolution transmission electron microscopy (HRTEM), and two-dimensional (2D) dynamic nuclear polarization (DNP)-enhanced NMR techniques. The framework structure of SSZ-70 is a polytype of MWW and can be viewed as a disordered ABC-type stacking of MWW-layers. HRTEM and XRPD simulations show that the stacking sequence is almost random, with each layer being shifted by ±1/3 along the ⟨110⟩ direction with respect to the previous one. However, a small preponderance of ABAB stacking could be discerned. DNP-enhanced 2D 29Si{29Si} J-mediated NMR analyses of calcined Si-SSZ-70 at natural 29Si isotopic abundance (4.7%) establish the through-covalent-bond 29Si-O-29Si connectivities of distinct Si sites in the framework. The DNP-NMR results corroborate the presence of MWW layers and, more importantly, identify two distinct types of Q3 silanol species at the surfaces of the interlayer regions. In the first, an isolated silanol group protrudes into the interlayer space pointing toward the pocket in the adjacent layer. In the second, the surrounding topology is the same, but the isolated -SiOH group is missing, leaving a nest of three Si-O-H groups in place of the three Si-O-Si linkages. The analyses clarify the structure of this complicated material, including features that do not exhibit long-range order. With these insights, the novel catalytic behavior of SSZ-70 can be better understood and opportunities for enhancement recognized.

6.
J Am Chem Soc ; 138(22): 7099-106, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27181421

RESUMEN

Can the location of the organic structure-directing agent (SDA) inside the channel system of a zeolite be determined experimentally in a systematic manner? In an attempt to answer this question, we investigated six borosilicate zeolites of known framework structure (SSZ-53, SSZ-55, SSZ-56, SSZ-58, SSZ-59, and SSZ-60), where the location of the SDA had only been simulated using molecular modeling techniques in previous studies. From synchrotron powder diffraction data, we were able to retrieve reliable experimental positions for the SDA by using a combination of simulated annealing (global optimization) and Rietveld refinement. In this way, problems arising from data quality and only partially compatible framework and SDA symmetries, which can lead to indecipherable electron density maps, can be overcome. Rietveld refinement using geometric restraints were then performed to optimize the positions and conformations of the SDAs. With these improved models, it was possible to go on to determine the location of the B atoms in the framework structure. That is, two pieces of information that are key to the understanding of zeolite synthesis-the location of the organic SDA in the channel system and of the positions adopted by heteroatoms in the silicate framework-can be extracted from experimental data using a systematic strategy. In most cases, the locations of the SDAs determined experimentally compare well with those simulated with molecular modeling, but there are also some clear differences, and the reason for these differences can be understood. The approach is generally applicable, and has also been used to locate organic guests, linkers, and ligands in metal-organic compounds.

7.
Phys Chem Chem Phys ; 18(24): 16080-3, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27251457

RESUMEN

The|Na10.2KCs0.8|8[Al12Si12O48]8(Fm3[combining macron]c)-LTA zeolite adsorbs CO2-over-CH4 with a high selectivity (over 1500). The uptake of carbon dioxide is also high (3.31 mmol g(-1), 293 K, 101 kPa). This form of zeolite A is a very promising adsorbent for applications such as biogas upgrading, where keeping the adsorption of methane to a minimum is crucial.

8.
J Am Chem Soc ; 137(5): 2015-20, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25607643

RESUMEN

The structure of the as-synthesized borosilicate zeolite SSZ-87 has been solved by combining high-resolution X-ray powder diffraction (XPD) and rotation electron diffraction (RED) techniques. The unit cell and space group symmetry were found from the XPD data, and were essential for the initial analysis of the RED data. Although the RED data were only 15% complete, this proved to be enough for structure solution with the program Focus. The framework topology is the same as that of ITQ-52 (IFW), but for SSZ-87 the locations of the structure directing agent (SDA) and the B atoms could also be determined. SSZ-87 has large cages interconnected by 8- and 10-rings. However, results of hydroisomerization and Al insertion experiments are much more in line with those found for 12-ring zeolites. This prompted the structure analyses of SSZ-87 after calcination, and Al insertion. During calcination, the material is also partially deboronated, and the location of the resulting vacancies is consistent with those of the B atoms in the as-synthesized material. After Al insertion, SSZ-87 was found to contain almost no B and to be defect free. In its calcined and deboronated form, the pore system of SSZ-87 is more flexible than those of other 10-ring zeolites. This can be explained by the fact that the large cages in SSZ-87 are connected via single rather than double 10-ring windows and that there are vacancies in some of these 10-rings.

9.
Chemistry ; 21(40): 14156-64, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26268428

RESUMEN

A literature survey reveals a prominent reduction in the concentration of Brønsted acid sites in hierarchically organized zeolites with increasing mesoporous or external surface area independent of the framework type or synthesis route; this suggests a common fundamental explanation. To determine the cause, nature, and impact of the underlying changes in aluminum speciation, this study combines a multitechnique analysis that integrates basic characterization, a detailed synchrotron XRD and multiple-quantum NMR spectroscopy assessment, and catalytic tests to correlate evolution of the properties with performance during successive steps in the preparation of hierarchical MFI-type zeolites by desilication. The findings, subsequently generalized to FAU- and BEA-type materials, identify the crucial impact of calcination on the protonic form, which is an integral step in the synthesis and regeneration of zeolite catalysts; on aluminum coordination; and the associated acidity trends.

10.
Inorg Chem ; 54(16): 7953-8, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26234954

RESUMEN

A new layered zirconium phosphate material has been synthesized ionothermally using N-ethylpyridinium (Epy) bromide as both the solvent and the template, and its structure has been solved from synchrotron X-ray powder diffraction data using the charge-flipping routine implemented in Superflip. Rietveld refinement coupled with difference electron density map analysis was used to locate the organic cations between the layers. In the final stages of refinement, it became clear that not only ethylpyridinium but also pyridinium ions were present between the zirconium phosphate layers. These findings were then corroborated using elemental analysis, TGA, and solid-state (13)C CP/MAS NMR data.

11.
Inorg Chem ; 53(5): 2652-65, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24520803

RESUMEN

The reaction of [MoO2Cl2(pzpy)] (1) (pzpy = 2-[3(5)-pyrazolyl]pyridine) with water in an open reflux system (16 h), in a microwave synthesis system (120 °C, 2 h), or in a Teflon-lined stainless steel digestion bomb (100 °C, 19 h) gave the molybdenum oxide/pyrazolylpyridine polymeric hybrid material [Mo3O9(pzpy)]n (2) as a microcrystalline powder in yields of 72­79%. Compound 2 can also be obtained by the hydrothermal reaction of MoO3, pzpy, and H2O at 160 °C for 3 d. Secondary products isolated from the reaction solutions included the salt (pzpyH)2(MoCl4) (3) (pzpyH = 2-[3(5)-pyrazolyl]pyridinium), containing a very rare example of the tetrahedral MoCl4(2­) anion, and the tetranuclear compound [Mo4O12(pzpy)4] (4). Reaction of 2 with excess tert-butylhydroperoxide (TBHP) led to the isolation of the oxodiperoxo complex [MoO(O2)2(pzpy)] (5). Single-crystal X-ray structures of 3 and 5 are described. Fourier transform (FT)-IR and FT Raman spectra for 1, 4, and 5 were assigned based on density functional theory calculations. The structure of 2 was determined from synchrotron powder X-ray diffraction data in combination with other physicochemical information. In 2, a hybrid organic­inorganic one-dimensional (1D) polymer, ∞(1)[Mo3O9(pzpy)], is formed by the connection of two very distinct components: a double ladder-type inorganic core reminiscent of the crystal structure of MoO3 and 1D chains of corner-sharing distorted {MoO4N2} octahedra. Compound 2 exhibits moderate activity and high selectivity when used as a (pre)catalyst for the epoxidation of cis-cyclooctene with TBHP. Under the reaction conditions used, 2 is poorly soluble and is gradually converted into 5, which is at least partly responsible for the catalytic reaction.

12.
Chimia (Aarau) ; 68(1): 19-25, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-28982433

RESUMEN

The development of powder diffraction (PD) techniques for structure analysis is traced from its inception almost 100 years ago to the present day, with a brief glimpse of what SwissFEL can contribute in the near future. Although PD data were used in the early days to deduce some simple high-symmetry structures, it was not until computers, instrumentation and synchrotrons arrived on the scene that the true potential of PD data could be realized. In the last 25 years, PD has blossomed into a viable method, not only for structure refinement, but also for structure solution. This means that scientists with polycrystalline materials that cannot be grown as single crystals can still obtain the structural information they need. Historically, structure solution from PD data began with model building, progressed through the application of single-crystal methods to simpler structures and the adaptation of those methods to the special problems posed by PD data, the development of automated model-building algorithms, and most recently to the application of charge flipping. As X-ray sources and detectors continue to develop, the boundary between a powder and a single crystal is narrowing. Laue microdiffraction techniques and the prospects offered by SwissFEL will allow single-crystal data to be collected on some polycrystalline materials.

13.
Chimia (Aarau) ; 68(1-2): 19-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801692

RESUMEN

The development of powder diffraction (PD) techniques for structure analysis is traced from its inception almost 100 years ago to the present day, with a brief glimpse of what SwissFEL can contribute in the near future. Although PD data were used in the early days to deduce some simple high-symmetry structures, it was not until computers, instrumentation and synchrotrons arrived on the scene that the true potential of PD data could be realized. In the last 25 years, PD has blossomed into a viable method, not only for structure refinement, but also for structure solution. This means that scientists with polycrystalline materials that cannot be grown as single crystals can still obtain the structural information they need. Historically, structure solution from PD data began with model building, progressed through the application of single-crystal methods to simpler structures and the adaptation of those methods to the special problems posed by PD data, the development of automated model-building algorithms, and most recently to the application of charge flipping. As X-ray sources and detectors continue to develop, the boundary between a powder and a single crystal is narrowing. Laue microdiffraction techniques and the prospects offered by SwissFEL will allow single-crystal data to be collected on some polycrystalline materials.

14.
Angew Chem Int Ed Engl ; 53(39): 10398-402, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25088447

RESUMEN

The synthesis of the high-silica zeolite SSZ-61 using a particularly bulky polycyclic structure-directing agent and the subsequent elucidation of its unusual framework structure with extra-large dumbbell-shaped pore openings are described. By using information derived from a variety of X-ray powder diffraction and electron microscopy techniques, the complex framework structure, with 20 Si atoms in the asymmetric unit, could be determined and the full structure refined. The Si atoms at the waist of the dumbbell are only three-connected and are bonded to terminal O atoms pointing into the channel. Unlike the six previously reported extra-large-pore zeolites, SSZ-61 contains no heteroatoms in the framework and can be calcined easily. This, coupled with the possibility of inserting a catalytically active center in the channel between the terminal O atoms in place of H(+), afford SSZ-61 intriguing potential for catalytic applications.

15.
Angew Chem Int Ed Engl ; 53(48): 13210-4, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25284344

RESUMEN

Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings.

16.
J Am Chem Soc ; 135(28): 10519-24, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23782259

RESUMEN

A new zeolite (SSZ-52, |(C14H28N)6Na6(H2O)18|[Al12Si96O216]), related to the DeNOx catalyst Cu-SSZ-13 (CHA framework type), has been synthesized using an unusual polycyclic quaternary ammonium cation as the structure-directing agent. By combining X-ray powder diffraction (XPD), high-resolution transmission electron microscopy (HRTEM) and molecular modeling techniques, its porous aluminosilicate framework structure (R3m, a = 13.6373(1) Å, c = 44.7311(4) Å), which can be viewed as an 18-layer stacking sequence of hexagonally arranged (Si,Al)6O6 rings (6-rings), has been elucidated. The structure has a three-dimensional 8-ring channel system and is a member of the ABC-6 family of zeolites (those that can be described in terms of 6-ring stacking sequences) like SSZ-13, but it has cavities that are twice as large. The code SFW has been assigned to this new framework type. The large cavities contain pairs of the bulky organic cations. HRTEM and XPD simulations show that stacking faults do occur, but only at the 5-10% level. SSZ-52 has considerable potential as a catalyst in the areas of gas conversion and sequestration.


Asunto(s)
Cobre/química , Zeolitas/química , Catálisis , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
17.
Nature ; 444(7115): 79-81, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17080087

RESUMEN

Many industrially important materials, ranging from ceramics to catalysts to pharmaceuticals, are polycrystalline and cannot be grown as single crystals. This means that non-conventional methods of structure analysis must be applied to obtain the structural information that is fundamental to the understanding of the properties of these materials. Electron microscopy might appear to be a natural approach, but only relatively simple structures have been solved by this route. Powder diffraction is another obvious option, but the overlap of reflections with similar diffraction angles causes an ambiguity in the relative intensities of those reflections. Various ways of overcoming or circumventing this problem have been developed, and several of these involve incorporating chemical information into the structure determination process. For complex zeolite structures, the FOCUS algorithm has proved to be effective. Because it operates in both real and reciprocal space, phase information obtained from high-resolution transmission electron microscopy images can be incorporated directly into this algorithm in a simple way. Here we show that by doing so, the complexity limit can be extended much further. The power of this approach has been demonstrated with the solution of the structure of the zeolite TNU-9 (|H9.3|[Al9.3Si182.7O384]; ref. 10) with 24 topologically distinct (Si,Al) atoms and 52 such O atoms. For comparison, ITQ-22 (ref. 11), the most complex zeolite known to date, has 16 topologically distinct (Si,Ge) atoms.

18.
J Am Chem Soc ; 133(50): 20604-10, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22077100

RESUMEN

The structure of the calcined borosilicate zeolite catalyst SSZ-82 ([Si(61.3)B(4.7)O(132)], Pmmn, a = 24.2783(4), b = 11.4665(2), and c = 14.1127(3) Å) has been solved from X-ray powder diffraction (XPD) data using the recently developed 2D-XPD charge flipping approach. The electron density maps generated with the more conventional powder charge flipping (pCF) algorithm could not be interpreted easily, so this new method, which begins by phasing low-resolution, 2D subsets of the data, was applied. Crystallographic phases were derived for the three main projections ([100], [010], and [001]) by using just the corresponding subsets of reflections (0kl, h0l, and hk0, respectively) from the full set of 3039 extracted intensities. These phases were then imposed on the (otherwise random) starting phases in the application of the pCF algorithm to the full data set. The framework structure, with 11 Si/B atoms in the asymmetric unit and a novel 12-/10-ring 2D channel system, could be seen clearly in the resulting electron density map. This is the first application of the 2D-XPD method to data collected on a material of unknown structure. Rietveld refinement of the structure revealed the positions of the B atoms in the framework and indicated that some water had been readsorbed in the pores.

19.
Angew Chem Int Ed Engl ; 50(35): 8139-42, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21739548

RESUMEN

Less is more: an open-framework zirconium phosphate with unusual 7-ring channels was synthesized ionothermally from a deep-eutectic solvent. This small-pore material displays a CO(2)/CH(4) adsorption ratio (17.3 at 1 bar) that is significantly higher than that of typical 8-ring materials, making it highly attractive for CO(2)/CH(4) separations.


Asunto(s)
Dióxido de Carbono/química , Metano/química , Circonio/química , Adsorción , Conformación Molecular
20.
Chemistry ; 16(24): 7224-30, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20480465

RESUMEN

Although listed in organic chemistry textbooks as one of the strongest carbon acids, and in spite of more than a hundred years of attempts to prepare the compound, tricyanomethane (cyanoform) has resisted isolation and characterization, either as the carbon-acid 1 or as the dicyanoketenimine tautomer 2. Only in the vapor phase at very low pressure has the compound been identified from its microwave spectrum. Here we review and partially repeat the preparative work. With the aid of spectroscopic and diffraction methods (including powder diffraction) we have identified some of the products obtained as: hydronium tricyanomethanide (3), (Z)-3-amino-2-cyano-3-iminoacrylimide (4), a co-crystal of 4 with sulfuric acid (or corresponding iminium salt), and an addition product of 2 with hydrochloric acid (5/6). Quantum-mechanical calculations at the MP2/6-311++g(2d,2p) level have been made to assess the relative energies of some of the molecules involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA