Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Sci Technol ; 57(28): 10263-10275, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37419491

RESUMEN

Fine particulate matter (PM2.5) exposure is a leading mortality risk factor in India and the surrounding region of South Asia. This study evaluates the contribution of emission sectors and fuels to PM2.5 mass for 29 states in India and 6 surrounding countries (Pakistan, Bangladesh, Nepal, Bhutan, Sri Lanka, and Myanmar) by combining source-specific emission estimates, stretched grid simulations from a chemical transport model, high resolution hybrid PM2.5, and disease-specific mortality estimates. We find that 1.02 (95% Confidence Interval (CI): 0.78-1.26) million deaths in South Asia attributable to ambient PM2.5 in 2019 were primarily from three leading sectors: residential combustion (28%), industry (15%), and power generation (12%). Solid biofuel is the leading combustible fuel contributing to the PM2.5-attributable mortality (31%), followed by coal (17%), and oil and gas (14%). State-level analyses reveal higher residential combustion contributions (35%-39%) in states (Delhi, Uttar-Pradesh, Haryana) with high ambient PM2.5 (>95 µg/m3). The combined mortality burden associated with residential combustion (ambient) and household air pollution (HAP) in India is 0.72 million (95% CI:0.54-0.89) (68% attributable to HAP, 32% attributable to residential combustion). Our results illustrate the potential to reduce PM2.5 mass and improve population health by reducing emissions from traditional energy sources across multiple sectors in South Asia.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Modelos Químicos , India/epidemiología
2.
Environ Sci Technol ; 57(43): 16276-16288, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37857355

RESUMEN

Nationally reported greenhouse gas inventories are a core component of the Paris Agreement's transparency framework. Comparisons with emission estimates derived from atmospheric observations help identify improvements to reduce uncertainties and increase the confidence in reported values. To facilitate comparisons over the contiguous United States, we present a 0.1° × 0.1° gridded inventory of annual 2012-2018 anthropogenic methane emissions, allocated to 26 individual source categories, with scale-dependent error estimates. Our inventory is consistent with the U.S. Environmental Protection Agency (EPA) Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHGI), submitted to the United Nations in 2020. Total emissions and patterns (spatial/temporal) reflect the activity and emission factor data underlying the GHGI, including many updates relative to a previous gridded version of the GHGI that has been extensively compared with observations. These underlying data are not generally available in global gridded inventories, and comparison to EDGAR version 6 shows large spatial differences, particularly for the oil and gas sectors. We also find strong regional variability across all sources in annual 2012-2018 spatial trends, highlighting the importance of understanding regional- and facility-level activities. Our inventory represents the first time series of gridded GHGI methane emissions and enables robust comparisons of emissions and their trends with atmospheric observations.


Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , Estados Unidos , Metano/análisis , Contaminantes Atmosféricos/análisis , United States Environmental Protection Agency , Incertidumbre
3.
Environ Sci Technol ; 57(5): 1870-1881, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36695819

RESUMEN

We report aircraft observations of extreme levels of HCl and the dihalogens Cl2, Br2, and BrCl in an industrial plume near the Great Salt Lake, Utah. Complete depletion of O3 was observed concurrently with halogen enhancements as a direct result of photochemically produced halogen radicals. Observed fluxes for Cl2, HCl, and NOx agreed with facility-reported emissions inventories. Bromine emissions are not required to be reported in the inventory, but are estimated as 173 Mg year-1 Br2 and 949 Mg year-1 BrCl, representing a major uncounted oxidant source. A zero-dimensional photochemical box model reproduced the observed O3 depletions and demonstrated that bromine radical cycling was principally responsible for the rapid O3 depletion. Inclusion of observed halogen emissions in both the box model and a 3D chemical model showed significant increases in oxidants and particulate matter (PM2.5) in the populated regions of the Great Salt Lake Basin, where winter PM2.5 is among the most severe air quality issues in the U.S. The model shows regional PM2.5 increases of 10%-25% attributable to this single industrial halogen source, demonstrating the impact of underreported industrial bromine emissions on oxidation sources and air quality within a major urban area of the western U.S.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Pérdida de Ozono , Ozono , Contaminantes Atmosféricos/análisis , Halógenos , Ozono/análisis , Bromo , Lagos , Contaminación del Aire/análisis , Material Particulado/análisis , Oxidantes
4.
Environ Sci Technol ; 54(16): 9908-9916, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32600027

RESUMEN

China has large anthropogenic chlorine emissions from agricultural fires, residential biofuel, waste incineration, coal combustion, and industrial processes. Here we quantify the effects of chlorine on fine particulate matter (PM2.5) and ozone air quality across China by using the GEOS-Chem chemical transport model with comprehensive anthropogenic emissions and detailed representation of gas-phase and heterogeneous chlorine chemistry. Comparison of the model to observed ClNO2, HCl, and particulate Cl- concentrations shows that reactive chlorine in China is mainly anthropogenic, unlike in other continental regions where it is mostly of marine origin. The model is successful in reproducing observed concentrations and their distributions, lending confidence in the anthropogenic chlorine emission estimates and the resulting chemistry. We find that anthropogenic chlorine emissions increase total inorganic PM2.5 by as much as 3.2 µg m-3 on an annual mean basis through the formation of ammonium chloride, partly compensated by a decrease of nitrate because ClNO2 formation competes with N2O5 hydrolysis. Annual mean MDA8 surface ozone increases by up to 1.9 ppb, mainly from ClNO2 chemistry, while reactivities of volatile organic compounds increase (by up to 48% for ethane). We find that a sufficient representation of chlorine chemistry in air quality models can be obtained from consideration of HCl/Cl- thermodynamics and ClNO2 chemistry, because other more complicated aspects of chlorine chemistry have a relatively minor effect.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , China , Cloro , Monitoreo del Ambiente , Ozono/análisis , Material Particulado/análisis
5.
Faraday Discuss ; 200: 529-557, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28580969

RESUMEN

Cavity enhanced spectroscopy, CES, is a high sensitivity direct absorption method that has seen increasing utility in the last decade, a period also marked by increasing requirements for understanding human impacts on atmospheric composition. This paper describes the current NOAA six channel cavity ring-down spectrometer (CRDS, the most common form of CES) for measurement of nitrogen oxides and O3. It further describes the results from measurements from a tower 300 m above the urban area of Seoul in late spring of 2015. The campaign demonstrates the performance of the CRDS instrument and provides new data on both photochemistry and nighttime chemistry in a major Asian megacity. The instrument provided accurate, high time resolution data for N2O5, NO, NO2, NOy and O3, but suffered from large wall loss in the sampling of NO3, illustrating the requirement for calibration of the NO3 inlet transmission. Both the photochemistry and nighttime chemistry of nitrogen oxides and O3 were rapid in this megacity. Sustained average rates of O3 buildup of 10 ppbv h-1 during recurring morning and early afternoon sea breezes led to a 50 ppbv average daily O3 rise. Nitrate radical production rates, P(NO3), averaged 3-4 ppbv h-1 in late afternoon and early evening, much greater than contemporary data from Los Angeles, a comparable U. S. megacity. These P(NO3) were much smaller than historical data from Los Angeles, however. Nighttime data at 300 m above ground showed considerable variability in high time resolution nitrogen oxide and O3, likely resulting from sampling within gradients in the nighttime boundary layer structure. Apparent nighttime biogenic VOC oxidation rates of several ppbv h-1 were also likely influenced by vertical gradients. Finally, daytime N2O5 mixing ratios of 3-35 pptv were associated with rapid daytime P(NO3) and agreed well with a photochemical steady state calculation.

6.
Lancet Planet Health ; 8(7): e476-e488, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969475

RESUMEN

BACKGROUND: Climate actions targeting combustion sources can generate large ancillary health benefits via associated air-quality improvements. Therefore, understanding the health costs associated with ambient fine particulate matter (PM2·5) from combustion sources can guide policy design for both air pollution and climate mitigation efforts. METHODS: In this modelling study, we estimated the health costs attributable to ambient PM2·5 from six major combustion sources across 204 countries using updated concentration-response models and an age-adjusted valuation method. We defined major combustion sources as the sum of total coal, liquid fuel and natural gas, solid biofuel, agricultural waste burning, other fires, and 50% of the anthropogenic fugitive, combustion, and industrial dust source. FINDINGS: Global long-term exposure to ambient PM2·5 from combustion sources imposed US$1·1 (95% uncertainty interval 0·8-1·5) trillion in health costs in 2019, accounting for 56% of the total health costs from all PM2·5 sources. Comparing source contributions to PM2·5 concentrations and health costs, we observed a higher share of health costs from combustion sources compared to their contribution to population-weighted PM2·5 concentration across 134 countries, accounting for more than 87% of the global population. This disparity was primarily attributed to the non-linear relationship between PM2·5 concentration and its associated health costs. Globally, phasing out fossil fuels can generate 23% higher relative health benefits compared to their share of PM2·5 reductions. Specifically, the share of health costs for total coal was 36% higher than the source's contributions to corresponding PM2·5 concentrations and the share of health costs for liquid fuel and natural gas was 12% higher. Other than fossil fuels, South Asia was expected to show 16% greater relative health benefits than the percentage reduction in PM2·5 from the abatement of solid biofuel emissions. INTERPRETATION: In most countries, targeting combustion sources might offer greater health benefits than non-combustion sources. This finding provides additional rationale for climate actions aimed at phasing out combustion sources, especially those related to fossil fuels and solid biofuel. Mitigation efforts designed according to source-specific health costs can more effectively avoid health costs than strategies that depend solely on the source contributions to overall PM2·5 concentration. FUNDING: The Health Effects Institute, the National Natural Science Foundation of China, and NASA.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Salud Global , Material Particulado , Material Particulado/análisis , Contaminación del Aire/economía , Contaminación del Aire/prevención & control , Humanos , Contaminantes Atmosféricos/análisis , Modelos Teóricos , Exposición a Riesgos Ambientales/prevención & control , Carbón Mineral/economía
7.
Nat Commun ; 15(1): 8185, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294116

RESUMEN

Developing future climate projections begins with choosing future emissions scenarios. While scenarios are often based on storylines, here instead we produce a probabilistic multi-million-member ensemble of radiative forcing trajectories to assess the relevance of future forcing thresholds. We coupled a probabilistic database of future greenhouse gas emission scenarios with a probabilistically calibrated reduced complexity climate model. In 2100, we project median forcings of 5.1 watt per square meters (5th to 95th percentiles of 3.3 to 7.1), with roughly 0.5% probability of exceeding 8.5 watt per square meters, and a 1% probability of being lower than 2.6 watt per square meters. Although the probability of 8.5 watt per square meters scenarios is low, our results support their continued utility for calibrating damage functions, characterizing climate in the 22nd century (the probability of exceeding 8.5 watt per square meters increases to about 7% by 2150), and assessing low-probability/high-impact futures.

8.
Nat Commun ; 15(1): 268, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233427

RESUMEN

Over the last decades, air pollution emissions have decreased substantially; however, inequities in air pollution persist. We evaluate county-level racial/ethnic and socioeconomic disparities in emissions changes from six air pollution source sectors (industry [SO2], energy [SO2, NOx], agriculture [NH3], commercial [NOx], residential [particulate organic carbon], and on-road transportation [NOx]) in the contiguous United States during the 40 years following the Clean Air Act (CAA) enactment (1970-2010). We calculate relative emission changes and examine the differential changes given county demographics using hierarchical nested models. The results show racial/ethnic disparities, particularly in the industry and energy generation source sectors. We also find that median family income is a driver of variation in relative emissions changes in all sectors-counties with median family income >$75 K vs. less generally experience larger relative declines in industry, energy, transportation, residential, and commercial-related emissions. Emissions from most air pollution source sectors have, on a national level, decreased following the United States CAA. In this work, we show that the relative reductions in emissions varied across racial/ethnic and socioeconomic groups.

9.
Sci Total Environ ; 879: 163191, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37003324

RESUMEN

Pandemics greatly affect transportation, economic and household activities and their associated air pollutant emissions. In less affluent regions, household energy use is often the dominant pollution source and is sensitive to the affluence change caused by a persisting pandemic. Air quality studies on COVID-19 have shown declines in pollution levels over industrialized regions as an immediate response to pandemic-caused lockdown and weakened economy. Yet few have considered the response of residential emissions to altered household affluence and energy choice supplemented by social distancing. Here we quantify the potential effects of long-term pandemics on ambient fine particulate matter pollution (PM2.5) and resulting premature mortality worldwide, by comprehensively considering the changes in transportation, economic production and household energy use. We find that a persisting COVID-like pandemic would reduce the global gross domestic product by 10.9 % and premature mortality related to black carbon, primary organic aerosols and secondary inorganic aerosols by 9.5 %. The global mortality decline would reach 13.0 % had the response of residential emissions been excluded. Among the 13 aggregated regions worldwide, the least affluent regions exhibit the greatest fractional economic losses with no comparable magnitudes of mortality reduction. This is because their weakened affluence would cause switch to more polluting household energy types on top of longer stay-at-home time, largely offsetting the effect of reduced transportation and economic production. International financial, technological and vaccine aids could reduce such environmental inequality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente
10.
Earth Syst Dyn ; 14(5): 1015-1037, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37942296

RESUMEN

Evidence of the physical and economic impacts of climate change is a critical input to policy development and decision-making. In addition to the magnitude of potential impacts, detailed estimates of where, when, and to whom those damages may occur; the types of impacts that will be most damaging; uncertainties in these damages; and the ability of adaptation to reduce potential risks are all interconnected and important considerations. This study utilizes the reduced-complexity model, the Framework for Evaluating Damages and Impacts (FrEDI), to rapidly project economic and physical impacts of climate change across 10 000 future scenarios for multiple impact sectors, regions, and populations within the contiguous United States (US). Results from FrEDI show that net national damages increase overtime, with mean climate-driven damages estimated to reach USD 2.9 trillion (95 % confidence interval (CI): USD 510 billion to USD 12 trillion) annually by 2090. Detailed FrEDI results show that for the analyzed sectors the majority of annual long-term (e.g., 2090) damages are associated with climate change impacts to human health, including mortality attributable to climate-driven changes in temperature and air pollution (O3 and PM2.5) exposure. Regional results also show that annual long-term climate-driven damages vary geographically. The Southeast (all regions are as defined in Fig. 5) is projected to experience the largest annual damages per capita (mean: USD 9300 per person annually; 95 % CI: USD 1800-USD 37 000 per person annually), whereas the smallest damages per capita are expected in the Southwest (mean: USD 6300 per person annually; 95 % CI: USD 840-USD 27 000 per person annually). Climate change impacts may also broaden existing societal inequalities, with, for example, Black or African Americans being disproportionately affected by additional premature mortality from changes in air quality. Lastly, FrEDI projections are extended through 2300 to estimate the net present climate-driven damages within US borders from marginal changes in greenhouse gas emissions. Combined, this analysis provides the most detailed illustration to date of the distribution of climate change impacts within US borders.

11.
Nat Commun ; 14(1): 5349, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660164

RESUMEN

Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5 exposure. Here we interpret satellite-derived PM2.5 estimates over 1998-2019 and find a reversal of previous growth in global PM2.5 air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5 exposure, related to both pollution levels and population size, increased from 1998 (28.3 µg/m3) to a peak in 2011 (38.9 µg/m3) and decreased steadily afterwards (34.7 µg/m3 in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3 marginal reduction in exposure, implying increasing urgency and benefits of PM2.5 mitigation with aging population and cleaner air.


Asunto(s)
Contaminación del Aire , Contaminación del Aire/efectos adversos , Contaminación Ambiental , África , Material Particulado/efectos adversos
12.
Earths Future ; 11(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37941800

RESUMEN

Atmospheric methane directly affects surface temperatures and indirectly affects ozone, impacting human welfare, the economy, and environment. The social cost of methane (SC-CH4) metric estimates the costs associated with an additional marginal metric ton of emissions. Current SC-CH4 estimates do not consider the indirect impacts associated with ozone production from changes in methane. We use global model simulations and a new BenMAP webtool to estimate respiratory-related deaths associated with increases in ozone from a pulse of methane emissions in 2020. By using an approach consistent with the current SC-CH4 framework, we monetize and discount annual damages back to present day values. We estimate that the methane-ozone mechanism is attributable to 760 (95% CI: 330-1200) respiratory-related deaths per million metric tons of methane globally, for a global net present damage of $1800/mT (95% CI: $760-$2800/Mt CH4; 2% Ramsey discount rate); this would double the current SC-CH4 if included. These physical impacts are consistent with recent studies, but comparing direct costs is challenging. Economic damages are sensitive to uncertainties in the exposure and health risks associated with tropospheric ozone, assumptions about future projections of NOx emissions, socioeconomic conditions, and mortality rates, monetization parameters, and other factors. Our estimates are highly sensitive to uncertainties in ozone health risks. We also develop a reduced form model to test sensitivities to other parameters. The reduced form tool runs with a user-supplied emissions pulse, as well as socioeconomic and precursor projections, enabling future integration of the methane-ozone mechanism into the SC-CH4 modeling framework.

13.
Sci Adv ; 7(26)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34162552

RESUMEN

Lockdowns during the COVID-19 pandemic provide an unprecedented opportunity to examine the effects of human activity on air quality. The effects on fine particulate matter (PM2.5) are of particular interest, as PM2.5 is the leading environmental risk factor for mortality globally. We map global PM2.5 concentrations for January to April 2020 with a focus on China, Europe, and North America using a combination of satellite data, simulation, and ground-based observations. We examine PM2.5 concentrations during lockdown periods in 2020 compared to the same periods in 2018 to 2019. We find changes in population-weighted mean PM2.5 concentrations during the lockdowns of -11 to -15 µg/m3 across China, +1 to -2 µg/m3 across Europe, and 0 to -2 µg/m3 across North America. We explain these changes through a combination of meteorology and emission reductions, mostly due to transportation. This work demonstrates regional differences in the sensitivity of PM2.5 to emission sources.

14.
Nat Commun ; 12(1): 3594, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127654

RESUMEN

Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Reducing the PM2.5 disease burden requires specific strategies that target dominant sources across multiple spatial scales. We provide a contemporary and comprehensive evaluation of sector- and fuel-specific contributions to this disease burden across 21 regions, 204 countries, and 200 sub-national areas by integrating 24 global atmospheric chemistry-transport model sensitivity simulations, high-resolution satellite-derived PM2.5 exposure estimates, and disease-specific concentration response relationships. Globally, 1.05 (95% Confidence Interval: 0.74-1.36) million deaths were avoidable in 2017 by eliminating fossil-fuel combustion (27.3% of the total PM2.5 burden), with coal contributing to over half. Other dominant global sources included residential (0.74 [0.52-0.95] million deaths; 19.2%), industrial (0.45 [0.32-0.58] million deaths; 11.7%), and energy (0.39 [0.28-0.51] million deaths; 10.2%) sectors. Our results show that regions with large anthropogenic contributions generally had the highest attributable deaths, suggesting substantial health benefits from replacing traditional energy sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Combustibles Fósiles , Material Particulado/análisis , Contaminación del Aire , Enfermedad , Exposición a Riesgos Ambientales , Humanos , Industrias , Mortalidad , Factores de Riesgo
15.
J Geophys Res Atmos ; 123(19): 11225-11237, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30997299

RESUMEN

We present airborne observations of gaseous reactive halogen species (HCl, Cl2, ClNO2, Br2,BrNO2, and BrCl), sulfur dioxide (SO2), and nonrefractory fine particulate chloride (pCl) and sulfate(pSO4) in power plant exhaust. Measurements were conducted during the Wintertime INvestigation of Transport, Emissions, and Reactivity campaign in February-March of 2015 aboard the NCAR-NSF C-130 aircraft. Fifty air mass encounters were identified in which SO2 levels were elevated ~5 ppb above ambient background levels and in proximity to operational power plants. Each encounter was attributed to one or more potential emission sources using a simple wind trajectory analysis. In case studies, we compare measured emission ratios to those reported in the 2011 National Emissions Inventory and present evidence of the conversion of HCl emitted from power plants to ClNO2. Taking into account possible chemical conversion downwind, there was general agreement between the observed and reported HCl: SO2 emission ratios. Reactive bromine species (Br2, BrNO2, and/or BrCl) were detected in the exhaust of some coal-fired power plants, likely related to the absence of wet flue gas desulfurization emission control technology. Levels of bromine species enhanced in some encounters exceeded those expected assuming all of the native bromide in coal was released to the atmosphere, though there was no reported use of bromide salts (as a way to reduce mercury emissions) during Wintertime INvestigation of Transport, Emissions, and Reactivity observations. These measurements represent the first ever in-flight observations of reactive gaseous chlorine and bromine containing compounds present in coal-fired power plant exhaust.

16.
Atmos Meas Tech ; 10(10): 3865-3876, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-32742525

RESUMEN

The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of cross-instrument calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ)mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ)to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. In terms of the range-resolving capability, the TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15% within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5% for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate very good measurement accuracy for these three TOLNet lidars, making them suitable for use in air quality, satellite validation, and ozone modeling efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA