Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36130322

RESUMEN

Epistasis refers to fitness or functional effects of mutations that depend on the sequence background in which these mutations arise. Epistasis is prevalent in nature, including populations of viruses, bacteria, and cancers, and can contribute to the evolution of drug resistance and immune escape. However, it is difficult to directly estimate epistatic effects from sampled observations of a population. At present, there are very few methods that can disentangle the effects of selection (including epistasis), mutation, recombination, genetic drift, and genetic linkage in evolving populations. Here we develop a method to infer epistasis, along with the fitness effects of individual mutations, from observed evolutionary histories. Simulations show that we can accurately infer pairwise epistatic interactions provided that there is sufficient genetic diversity in the data. Our method also allows us to identify which fitness parameters can be reliably inferred from a particular data set and which ones are unidentifiable. Our approach therefore allows for the inference of more complex models of selection from time-series genetic data, while also quantifying uncertainty in the inferred parameters.


Asunto(s)
Epistasis Genética , Selección Genética , Aptitud Genética , Ligamiento Genético , Modelos Genéticos , Mutación
2.
J Infect Dis ; 224(2): 229-240, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33928374

RESUMEN

BACKGROUND: Etiopathogenesis of the clinical variability of the coronavirus disease 2019 (COVID-19) remains mostly unknown. In this study, we investigate the role of killer cell immunoglobulin-like receptor (KIR)/human leukocyte antigen class-I (HLA-I) interactions in the susceptibility and severity of COVID-19. METHODS: We performed KIR and HLA-I genotyping and natural killer cell (NKc) receptors immunophenotyping in 201 symptomatic patients and 210 noninfected controls. RESULTS: The NKcs with a distinctive immunophenotype, suggestive of recent activation (KIR2DS4low CD16low CD226low CD56high TIGIThigh NKG2Ahigh), expanded in patients with severe COVID-19. This was associated with a higher frequency of the functional A-telomeric activating KIR2DS4 in severe versus mild and/or moderate patients and controls (83.7%, 55.7% and 36.2%, P < 7.7 × 10-9). In patients with mild and/or moderate infection, HLA-B*15:01 was associated with higher frequencies of activating B-telomeric KIR3DS1 compared with patients with other HLA-B*15 subtypes and noninfected controls (90.9%, 42.9%, and 47.3%; P < .002; Pc = 0.022). This strongly suggests that HLA-B*15:01 specifically presenting severe acute respiratory syndrome coronavirus 2 peptides could form a neoligand interacting with KIR3DS1. Likewise, a putative neoligand for KIR2DS4 could arise from other HLA-I molecules presenting severe acute respiratory syndrome coronavirus 2 peptides expressed on infected an/or activated lung antigen-presenting cells. CONCLUSIONS: Our results support a crucial role of NKcs in the clinical variability of COVID-19 with specific KIR/ligand interactions associated with disease severity.


Asunto(s)
COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Receptores KIR/genética , Anciano , COVID-19/inmunología , COVID-19/patología , Estudios Transversales , Femenino , Genotipo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Inmunofenotipificación , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Receptores KIR/metabolismo , SARS-CoV-2 , Índice de Severidad de la Enfermedad
3.
Bioinformatics ; 36(7): 2262-2263, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800008

RESUMEN

SUMMARY: Patterns of mutational correlations, learnt from protein sequences, have been shown to be informative of co-evolutionary sectors that are tightly linked to functional and/or structural properties of proteins. Previously, we developed a statistical inference method, robust co-evolutionary analysis (RoCA), to reliably predict co-evolutionary sectors of proteins, while controlling for statistical errors caused by limited data. RoCA was demonstrated on multiple viral proteins, with the inferred sectors showing close correspondences with experimentally-known biochemical domains. To facilitate seamless use of RoCA and promote more widespread application to protein data, here we present a standalone cross-platform package 'RocaSec' which features an easy-to-use GUI. The package only requires the multiple sequence alignment of a protein for inferring the co-evolutionary sectors. In addition, when information on the protein biochemical domains is provided, RocaSec returns the corresponding statistical association between the inferred sectors and biochemical domains. AVAILABILITY AND IMPLEMENTATION: The RocaSec software is publicly available under the MIT License at https://github.com/ahmedaq/RocaSec. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Evolución Biológica , Programas Informáticos , Dominios Proteicos , Alineación de Secuencia , Proteínas Virales
4.
Bioinformatics ; 36(7): 2278-2279, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31851308

RESUMEN

SUMMARY: Learning underlying correlation patterns in data is a central problem across scientific fields. Maximum entropy models present an important class of statistical approaches for addressing this problem. However, accurately and efficiently inferring model parameters are a major challenge, particularly for modern high-dimensional applications such as in biology, for which the number of parameters is enormous. Previously, we developed a statistical method, minimum probability flow-Boltzmann Machine Learning (MPF-BML), for performing fast and accurate inference of maximum entropy model parameters, which was applied to genetic sequence data to estimate the fitness landscape for the surface proteins of human immunodeficiency virus and hepatitis C virus. To facilitate seamless use of MPF-BML and encourage more widespread application to data in diverse fields, we present a standalone cross-platform package of MPF-BML which features an easy-to-use graphical user interface. The package only requires the input data (protein sequence data or data of multiple configurations of a complex system with large number of variables) and returns the maximum entropy model parameters. AVAILABILITY AND IMPLEMENTATION: The MPF-BML software is publicly available under the MIT License at https://github.com/ahmedaq/MPF-BML-GUI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Programas Informáticos , Entropía , Humanos , Aprendizaje Automático
5.
Proc Natl Acad Sci U S A ; 115(4): E564-E573, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311326

RESUMEN

HIV is a highly mutable virus, and over 30 years after its discovery, a vaccine or cure is still not available. The isolation of broadly neutralizing antibodies (bnAbs) from HIV-infected patients has led to renewed hope for a prophylactic vaccine capable of combating the scourge of HIV. A major challenge is the design of immunogens and vaccination protocols that can elicit bnAbs that target regions of the virus's spike proteins where the likelihood of mutational escape is low due to the high fitness cost of mutations. Related challenges include the choice of combinations of bnAbs for therapy. An accurate representation of viral fitness as a function of its protein sequences (a fitness landscape), with explicit accounting of the effects of coupling between mutations, could help address these challenges. We describe a computational approach that has allowed us to infer a fitness landscape for gp160, the HIV polyprotein that comprises the viral spike that is targeted by antibodies. We validate the inferred landscape through comparisons with experimental fitness measurements, and various other metrics. We show that an effective antibody that prevents immune escape must selectively bind to high escape cost residues that are surrounded by those where mutations incur a low fitness cost, motivating future applications of our landscape for immunogen design.


Asunto(s)
Aptitud Genética , Proteínas gp160 de Envoltorio del VIH/genética , Evasión Inmune/genética , Modelos Genéticos , Mutación , Anticuerpos Neutralizantes/metabolismo , Sitios de Unión de Anticuerpos/genética , Antígenos CD4/genética , Antígenos CD4/metabolismo , Simulación por Computador , Proteínas gp160 de Envoltorio del VIH/inmunología
6.
Stat Sin ; 31(2): 571-601, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33833489

RESUMEN

Sample correlation matrices are widely used, but for high-dimensional data little is known about their spectral properties beyond "null models", which assume the data have independent coordinates. In the class of spiked models, we apply random matrix theory to derive asymptotic first-order and distributional results for both leading eigenvalues and eigenvectors of sample correlation matrices, assuming a high-dimensional regime in which the ratio p/n, of number of variables p to sample size n, converges to a positive constant. While the first-order spectral properties of sample correlation matrices match those of sample covariance matrices, their asymptotic distributions can differ significantly. Indeed, the correlation-based fluctuations of both sample eigenvalues and eigenvectors are often remarkably smaller than those of their sample covariance counterparts.

7.
Bioinformatics ; 35(20): 3884-3889, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31250884

RESUMEN

MOTIVATION: Patterns of mutational correlations, learnt from patient-derived sequences of human immunodeficiency virus (HIV) proteins, are informative of biochemically linked networks of interacting sites that may enable viral escape from the host immune system. Accurate identification of these networks is important for rationally designing vaccines which can effectively block immune escape pathways. Previous computational methods have partly identified such networks by examining the principal components (PCs) of the mutational correlation matrix of HIV Gag proteins. However, driven by a conservative approach, these methods analyze the few dominant (strongest) PCs, potentially missing information embedded within the sub-dominant (relatively weaker) ones that may be important for vaccine design. RESULTS: By using sequence data for HIV Gag, complemented by model-based simulations, we revealed that certain networks of interacting sites that appear important for vaccine design purposes are not accurately reflected by the dominant PCs. Rather, these networks are encoded jointly by both dominant and sub-dominant PCs. By incorporating information from the sub-dominant PCs, we identified a network of interacting sites of HIV Gag that associated very strongly with viral control. Based on this network, we propose several new candidates for a potent T-cell-based HIV vaccine. AVAILABILITY AND IMPLEMENTATION: Accession numbers of all sequences used and the source code scripts for all analysis and figures reported in this work are available online at https://github.com/faraz107/HIV-Gag-Immunogens. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Secuencia de Aminoácidos , Humanos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana
8.
PLoS Comput Biol ; 14(9): e1006409, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30192744

RESUMEN

Mutational correlation patterns found in population-level sequence data for the Human Immunodeficiency Virus (HIV) and the Hepatitis C Virus (HCV) have been demonstrated to be informative of viral fitness. Such patterns can be seen as footprints of the intrinsic functional constraints placed on viral evolution under diverse selective pressures. Here, considering multiple HIV and HCV proteins, we demonstrate that these mutational correlations encode a modular co-evolutionary structure that is tightly linked to the structural and functional properties of the respective proteins. Specifically, by introducing a robust statistical method based on sparse principal component analysis, we identify near-disjoint sets of collectively-correlated residues (sectors) having mostly a one-to-one association to largely distinct structural or functional domains. This suggests that the distinct phenotypic properties of HIV/HCV proteins often give rise to quasi-independent modes of evolution, with each mode involving a sparse and localized network of mutational interactions. Moreover, individual inferred sectors of HIV are shown to carry immunological significance, providing insight for guiding targeted vaccine strategies.


Asunto(s)
Infecciones por VIH/virología , VIH-1 , Hepacivirus , Hepatitis C/virología , Algoritmos , Alelos , Biología Computacional , Simulación por Computador , Análisis Mutacional de ADN , ADN Viral , Progresión de la Enfermedad , Evolución Molecular , Proteína p24 del Núcleo del VIH/fisiología , Antígenos HLA/química , Humanos , Sistema Inmunológico , Distribución Normal , Fenotipo , Análisis de Componente Principal , Dominios Proteicos , Relación Estructura-Actividad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología
9.
J Virol ; 88(13): 7628-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760894

RESUMEN

UNLABELLED: Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver failure and liver cancer, affecting around 3% of the world's population. The extreme sequence variability of the virus resulting from error-prone replication has thwarted the discovery of a universal prophylactic vaccine. It is known that vigorous and multispecific cellular immune responses, involving both helper CD4(+) and cytotoxic CD8(+) T cells, are associated with the spontaneous clearance of acute HCV infection. Escape mutations in viral epitopes can, however, abrogate protective T-cell responses, leading to viral persistence and associated pathologies. Despite the propensity of the virus to mutate, there might still exist substitutions that incur a fitness cost. In this paper, we identify groups of coevolving residues within HCV nonstructural protein 3 (NS3) by analyzing diverse sequences of this protein using ideas from random matrix theory and associated methods. Our analyses indicate that one of these groups comprises a large percentage of residues for which HCV appears to resist multiple simultaneous substitutions. Targeting multiple residues in this group through vaccine-induced immune responses should either lead to viral recognition or elicit escape substitutions that compromise viral fitness. Our predictions are supported by published clinical data, which suggested that immune genotypes associated with spontaneous clearance of HCV preferentially recognized and targeted this vulnerable group of residues. Moreover, mapping the sites of this group onto the available protein structure provided insight into its functional significance. An epitope-based immunogen is proposed as an alternative to the NS3 epitopes in the peptide-based vaccine IC41. IMPORTANCE: Despite much experimental work on HCV, a thorough statistical study of the HCV sequences for the purpose of immunogen design was missing in the literature. Such a study is vital to identify epistatic couplings among residues that can provide useful insights for designing a potent vaccine. In this work, ideas from random matrix theory were applied to characterize the statistics of substitutions within the diverse publicly available sequences of the genotype 1a HCV NS3 protein, leading to a group of sites for which HCV appears to resist simultaneous substitutions possibly due to deleterious effect on viral fitness. Our analysis leads to completely novel immunogen designs for HCV. In addition, the NS3 epitopes used in the recently proposed peptide-based vaccine IC41 were analyzed in the context of our framework. Our analysis predicts that alternative NS3 epitopes may be worth exploring as they might be more efficacious.


Asunto(s)
Hepacivirus/genética , Hepatitis C/inmunología , Inmunidad Celular/inmunología , Epítopos Inmunodominantes/inmunología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Sustitución de Aminoácidos , Interpretación Estadística de Datos , Genotipo , Hepacivirus/aislamiento & purificación , Hepatitis C/virología , Humanos , Mutación/genética , Conformación Proteica , Proteínas no Estructurales Virales/genética
10.
Viruses ; 16(3)2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543838

RESUMEN

The SARS-CoV-2 Omicron sub-variants BA.2.86 and JN.1 contain multiple mutations in the spike protein that were not present in previous variants of concern and Omicron sub-variants. Preliminary research suggests that these variants reduce the neutralizing capability of antibodies induced by vaccines, which is particularly significant for JN.1. This raises concern as many widely deployed COVID-19 vaccines are based on the spike protein of the ancestral Wuhan strain of SARS-CoV-2. While T cell responses have been shown to be robust against previous SARS-CoV-2 variants, less is known about the impact of mutations in BA.2.86 and JN.1 on T cell responses. We evaluate the effect of mutations specific to BA.2.86 and JN.1 on experimentally determined T cell epitopes derived from the spike protein of the ancestral Wuhan strain and the spike protein of the XBB.1.5 strain that has been recommended as a booster vaccine. Our data suggest that BA.2.86 and JN.1 affect numerous T cell epitopes in spike compared to previous variants; however, the widespread loss of T cell recognition against these variants is unlikely.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacunas contra la COVID-19 , Epítopos de Linfocito T/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Linfocitos T , Anticuerpos Neutralizantes , Anticuerpos Antivirales
11.
Nat Commun ; 15(1): 3833, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714654

RESUMEN

Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.


Asunto(s)
Antígenos Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Aprendizaje Automático , Estaciones del Año , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Antígenos Virales/inmunología , Antígenos Virales/genética , Pruebas de Inhibición de Hemaglutinación , Variación Antigénica/genética , Vacunas contra la Influenza/inmunología
12.
Nat Struct Mol Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951623

RESUMEN

The development of precise RNA-editing tools is essential for the advancement of RNA therapeutics. CRISPR (clustered regularly interspaced short palindromic repeats) PspCas13b is a programmable RNA nuclease predicted to offer superior specificity because of its 30-nucleotide spacer sequence. However, its design principles and its on-target, off-target and collateral activities remain poorly characterized. Here, we present single-base tiled screening and computational analyses that identify key design principles for potent and highly selective RNA recognition and cleavage in human cells. We show that the de novo design of spacers containing guanosine bases at precise positions can greatly enhance the catalytic activity of inefficient CRISPR RNAs (crRNAs). These validated design principles (integrated into an online tool, https://cas13target.azurewebsites.net/ ) can predict highly effective crRNAs with ~90% accuracy. Furthermore, the comprehensive spacer-target mutagenesis revealed that PspCas13b can tolerate only up to four mismatches and requires ~26-nucleotide base pairing with the target to activate its nuclease domains, highlighting its superior specificity compared to other RNA or DNA interference tools. On the basis of this targeting resolution, we predict an extremely low probability of PspCas13b having off-target effects on other cellular transcripts. Proteomic analysis validated this prediction and showed that, unlike other Cas13 orthologs, PspCas13b exhibits potent on-target activity and lacks collateral effects.

13.
Nat Commun ; 14(1): 7457, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978179

RESUMEN

Direct-acting antiviral agents (DAAs) provide efficacious therapeutic treatments for chronic Hepatitis C virus (HCV) infection. However, emergence of drug resistance mutations (DRMs) can greatly affect treatment outcomes and impede virological cure. While multiple DRMs have been observed for all currently used DAAs, the evolutionary determinants of such mutations are not currently well understood. Here, by considering DAAs targeting the nonstructural 3 (NS3) protein of HCV, we present results suggesting that epistasis plays an important role in the evolution of DRMs. Employing a sequence-based fitness landscape model whose predictions correlate highly with experimental data, we identify specific DRMs that are associated with strong epistatic interactions, and these are found to be enriched in multiple NS3-specific DAAs. Evolutionary modelling further supports that the identified DRMs involve compensatory mutational interactions that facilitate relatively easy escape from drug-induced selection pressures. Our results indicate that accounting for epistasis is important for designing future HCV NS3-targeting DAAs.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Hepatitis C Crónica/complicaciones , Antivirales/farmacología , Antivirales/uso terapéutico , Epistasis Genética , Proteínas no Estructurales Virales/genética , Hepatitis C/genética , Farmacorresistencia Viral/genética , Genotipo
14.
Virus Evol ; 9(2): vead068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107333

RESUMEN

The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a non-covalent heterodimer with E2, the main target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance to E2-specific antibodies remain largely unknown. We investigate this problem using a combination of fitness landscape and evolutionary modeling. Our analysis indicates that E1 and E2 proteins collectively mediate viral fitness and suggests that fitness-compensating E1 mutations may accelerate escape from E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing directions for robust HCV vaccine development.

15.
Nat Commun ; 14(1): 1793, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002233

RESUMEN

Viral and host factors can shape SARS-CoV-2 evolution. However, little is known about lineage-specific and vaccination-specific mutations that occur within individuals. Here, we analysed deep sequencing data from 2,820 SARS-CoV-2 respiratory samples with different viral lineages to describe the patterns of within-host diversity under different conditions, including vaccine-breakthrough infections. In unvaccinated individuals, variant of Concern (VOC) Alpha, Delta, and Omicron respiratory samples were found to have higher within-host diversity and were under neutral to purifying selection at the full genome level compared to non-VOC SARS-CoV-2. Breakthrough infections in 2-dose or 3-dose Comirnaty and CoronaVac vaccinated individuals did not increase levels of non-synonymous mutations and did not change the direction of selection pressure. Vaccine-induced antibody or T cell responses did not appear to have significant impact on within-host SARS-CoV-2 sequence diversification. Our findings suggest that vaccination does not increase exploration of SARS-CoV-2 protein sequence space and may not facilitate emergence of viral variants.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Antivirales , Infección Irruptiva , Vacunas contra la COVID-19 , Mutación
16.
Viruses ; 14(1)2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-35062283

RESUMEN

Omicron, the most recent SARS-CoV-2 variant of concern (VOC), harbours multiple mutations in the spike protein that were not observed in previous VOCs. Initial studies suggest Omicron to substantially reduce the neutralizing capability of antibodies induced from vaccines and previous infection. However, its effect on T cell responses remains to be determined. Here, we assess the effect of Omicron mutations on known T cell epitopes and report data suggesting T cell responses to remain broadly robust against this new variant.


Asunto(s)
Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , COVID-19/inmunología , COVID-19/virología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas Virales/metabolismo
17.
iScience ; 25(1): 103569, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34988406

RESUMEN

Hepatitis C virus (HCV) is a leading cause of liver-associated disease and liver cancer. Of the major HCV subtypes, patients infected with subtype 1b have been associated with having a higher risk of developing chronic infection and hepatocellular carcinoma. However, underlying reasons for this increased disease severity remain unknown. Here, we provide an evolutionary rationale, based on a comparative study of fitness landscape and in-host evolutionary models of the E2 glycoprotein of HCV subtypes 1a and 1b. Our analysis demonstrates that a higher chronicity rate of 1b may be attributed to lower fitness constraints, enabling 1b viruses to more easily escape antibody responses. More generally, our results suggest that differences in evolutionary constraints between HCV subtypes may be an important factor in mediating distinct disease outcomes. Our analysis also identifies antibodies that appear escape-resistant against both subtypes 1a and 1b, providing directions for designing HCV vaccines having cross-subtype protection.

18.
Vaccines (Basel) ; 10(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455291

RESUMEN

Memory SARS-CoV-2-specific CD8+ T cell responses induced upon infection or COVID-19 vaccination have been important for protecting against severe COVID-19 disease while being largely robust against variants of concern (VOCs) observed so far. However, T cell immunity may be weakened by genetic mutations in future SARS-CoV-2 variants that lead to widespread T cell escape. The capacity for SARS-CoV-2 mutations to escape memory T cell responses requires comprehensive experimental investigation, though this is prohibited by the large number of SARS-CoV-2 mutations that have been observed. To guide targeted experimental studies, here we provide a screened list of potential SARS-CoV-2 T cell escape mutants. These mutants are identified as candidates for T cell escape as they lie within CD8+ T cell epitopes that are commonly targeted in individuals and are predicted to abrogate HLA-peptide binding.

19.
Viruses ; 14(9)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36146766

RESUMEN

Beginning in May 2022, a novel cluster of monkeypox virus infections was detected in humans. This virus has spread rapidly to non-endemic countries, sparking global concern. Specific vaccines based on the vaccinia virus (VACV) have demonstrated high efficacy against monkeypox viruses in the past and are considered an important outbreak control measure. Viruses observed in the current outbreak carry distinct genetic variations that have the potential to affect vaccine-induced immune recognition. Here, by investigating genetic variation with respect to orthologous immunogenic vaccinia-virus proteins, we report data that anticipates immune responses induced by VACV-based vaccines, including the currently available MVA-BN and ACAM2000 vaccines, to remain highly cross-reactive against the newly observed monkeypox viruses.


Asunto(s)
Monkeypox virus , Vaccinia , Reacciones Cruzadas , Humanos , Monkeypox virus/genética , Vaccinia/prevención & control , Virus Vaccinia/genética
20.
Res Sq ; 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35982671

RESUMEN

Viral and host factors can shape SARS-CoV-2 within-host viral diversity and virus evolution. However, little is known about lineage-specific and vaccination-specific mutations that occur within individuals. Here we analysed deep sequencing data from 2,146 SARS-CoV-2 samples with different viral lineages to describe the patterns of within-host diversity in different conditions, including vaccine-breakthrough infections. Variant of Concern (VOC) Alpha, Delta, and Omicron samples were found to have higher within-host nucleotide diversity while being under weaker purifying selection at full genome level compared to non-VOC SARS-CoV-2 viruses. Breakthrough Delta and Omicron infections in Comirnaty and CoronaVac vaccinated individuals appeared to have higher within-host purifying selection at the full-genome and/or Spike gene levels. Vaccine-induced antibody or T cell responses did not appear to have significant impact on within-host SARS-CoV-2 evolution. Our findings suggest that vaccination does not increase SARS-CoV-2 protein sequence space and may not facilitate emergence of more viral variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA