Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
New Phytol ; 241(5): 1936-1949, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38180262

RESUMEN

In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.


Asunto(s)
Fitomejoramiento , Plantas , Haploidia , Plantas/genética , Centrómero
2.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279283

RESUMEN

Mushrooms are a nutritionally rich and sustainably-produced food with a growing global market. Agaricus bisporus accounts for 11% of the total world mushroom production and it is the dominant species cultivated in Europe. It faces threats from pathogens that cause important production losses, including the mycoparasite Lecanicillium fungicola, the causative agent of dry bubble disease. Through quantitative real-time polymerase chain reaction (qRT-PCR), we determine the impact of L. fungicola infection on the transcription patterns of A. bisporus genes involved in key cellular processes. Notably, genes related to cell division, fruiting body development, and apoptosis exhibit dynamic transcriptional changes in response to infection. Furthermore, A. bisporus infected with L. fungicola were found to accumulate increased levels of reactive oxygen species (ROS). Interestingly, the transcription levels of genes involved in the production and scavenging mechanisms of ROS were also increased, suggesting the involvement of changes to ROS homeostasis in response to L. fungicola infection. These findings identify potential links between enhanced cell proliferation, impaired fruiting body development, and ROS-mediated defence strategies during the A. bisporus (host)-L. fungicola (pathogen) interaction, and offer avenues for innovative disease control strategies and improved understanding of fungal pathogenesis.


Asunto(s)
Agaricus , Hypocreales , Especies Reactivas de Oxígeno , Agaricus/genética , Hypocreales/fisiología
3.
Agron Sustain Dev ; 44(2): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550797

RESUMEN

As a fundamental pillar of food security in sub-Saharan Africa (SSA), ensuring seed security is critical to empowering farmers in cultivating food and livestock feed, thereby fostering income generation from agricultural outputs. Among the crops cultivated by smallholders, legumes have the potential to deliver multifaceted benefits. Legumes are nutrient-dense and enhance soil health through their nitrogen-fixing qualities. However, in many instances, the development, release, and supply of improved legume varieties are insufficient to meet the needs of smallholder farmers in SSA. Here, we systematically reviewed the literature to (i) identify and categorize existing legume seed systems, (ii) map legume varieties available to smallholders, (iii) identify barriers hindering the adoption of various legume varieties, and (iv) identify potential strategies and opportunities for strengthening legume seed systems in SSA. Our results demonstrate the coexistence of formal and informal seed systems within legume seed supply chains in SSA, each employing unique seed distribution channels. Smallholders, however, are shown to predominantly depend on the informal seed system to source most legume seeds except for commercially available varieties. We also identified a diverse range of legume varieties available to smallholders in the region, with farmers having varying trait preferences based on crop type and gender. Notably, high yield and abiotic stress tolerance were the most preferred traits. The adoption of these varieties, however, is influenced by various factors, including lack of timely access to seeds in adequate quantities from the formal seed system, high seed costs, and limited information on new varieties. The reviewed literature highlighted that utilizing improved legume varieties had a positive effect on smallholders, leading to improved welfare, food security, dietary diversity, and income. We conclude that the effective scaling of legume systems in SSA is contingent upon the presence of supportive policy frameworks and well-established technical support structures. Graphical Abstract: Packets of legume seeds within a legume germplasm and breeding program at the University of Zambia (Photo by Caitlin Breen, 2022). Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-024-00956-6.

4.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373458

RESUMEN

Lettuce (Lactuca sativa L.) is one of the commercially important leafy vegetables worldwide. However, lettuce cultivars vary widely in their carotenoid concentrations at the time of harvest. While the carotenoid content of lettuce can depend on transcript levels of key biosynthetic enzymes, genes that can act as biomarkers for carotenoid accumulation at early stages of plant growth have not been identified. Transcriptomic and metabolomic analysis was performed on the inner and outer leaves of the six cultivars at different developmental stages to identify gene-to-metabolite networks affecting the accumulation of two key carotenoids, ß-carotene and lutein. Statistical analysis, including principal component analysis, was used to better understand variations in carotenoid concentration between leaf age and cultivars. Our results demonstrate that key enzymes of carotenoid biosynthesis pathway can alter lutein and ß-carotene biosynthesis across commercial cultivars. To ensure high carotenoids content in leaves, the metabolites sink from ß-carotene and lutein to zeaxanthin, and subsequently, abscisic acid needs to be regulated. Based on 2-3-fold carotenoids increase at 40 days after sowing (DAS) as compared to the seedling stage, and 1.5-2-fold decline at commercial stage (60 DAS) compared to the 40 DAS stage, we conclude that the value of lettuce for human nutrition would be improved by use of less mature plants, as the widely-used commercial stage is already at plant senescence stage where carotenoids and other essential metabolites are undergoing degradation.


Asunto(s)
Lactuca , beta Caroteno , Humanos , beta Caroteno/metabolismo , Lactuca/metabolismo , Luteína , Plantones/metabolismo , Carotenoides/metabolismo
5.
Theor Appl Genet ; 135(12): 4351-4370, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36131140

RESUMEN

KEY MESSAGE: Genome-wide association study (GWAS) demonstrated that multiple genomic regions influence grain quality traits under nitrogen-starved soils. Using genomic prediction, genetic gains can be improved through selection for grain quality traits. Soils in sub-Saharan Africa are nitrogen deficient due to low fertilizer use and inadequate soil fertility management practices. This has resulted in a significant yield gap for the major staple crop maize, which is undermining nutritional security and livelihood sustainability across the region. Dissecting the genetic basis of grain protein, starch and oil content under nitrogen-starved soils can increase our understanding of the governing genetic systems and improve the efficacy of future breeding schemes. An association mapping panel of 410 inbred lines and four bi-parental populations were evaluated in field trials in Kenya and South Africa under optimum and low nitrogen conditions and genotyped with 259,798 SNP markers. Genetic correlations demonstrated that these populations may be utilized to select higher performing lines under low nitrogen stress. Furthermore, genotypic, environmental and GxE variations in nitrogen-starved soils were found to be significant for oil content. Broad sense heritabilities ranged from moderate (0.18) to high (0.86). Under low nitrogen stress, GWAS identified 42 SNPs linked to grain quality traits. These significant SNPs were associated with 51 putative candidate genes. Linkage mapping identified multiple QTLs for the grain quality traits. Under low nitrogen conditions, average prediction accuracies across the studied genotypes were higher for oil content (0.78) and lower for grain yield (0.08). Our findings indicate that grain quality traits are polygenic and that using genomic selection in maize breeding can improve genetic gain. Furthermore, the identified genomic regions and SNP markers can be utilized for selection to improve maize grain quality traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
6.
Mol Biol Evol ; 36(6): 1239-1253, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913563

RESUMEN

Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Impresión Genómica , Selección Genética , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética
7.
Plant J ; 92(6): 1044-1058, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29024088

RESUMEN

Genomic imprinting in the seed endosperm could be due to unequal parental-genome contribution effects in triploid endosperm tissue that trigger parent-of-origin specific activation and/or silencing of loci prone to genomic imprinting. To determine whether genomic imprinting is triggered by unequal parental-genome contribution effects, we generated a whole-genome transcriptome dataset of F1 hybrid triploid embryos (as mimics of F1 hybrid triploid endosperm). For the vast majority of genes, the parental contributions to their expression levels in the F1 triploid hybrid embryos follow a biallelic and linear expression pattern. While allele-specific expression (ASE) bias was detected, such effects were predominantly parent-of-origin independent. We demonstrate that genomic imprinting is largely absent from F1 triploid embryos, strongly suggesting that neither triploidy nor unequal parental-genome contribution are key triggers of genomic imprinting in plants. However, extensive parental-genome dosage effects on gene expression were observed between the reciprocal F1 hybrid embryos, particularly for genes involved in defence response and nutrient reservoir activity, potentially leading to the seed size differences between reciprocal triploids. We further determined that unequal parental-genome contribution in F1 triploids can lead to overexpression effects that are parent-of-origin dependent, and which are not observed in diploid or tetraploid embryos in which the parental-genome dosage is balanced. Overall, our study demonstrates that neither triploidy nor unequal parental-genome contribution is sufficient to trigger imprinting in plant tissues, suggesting that genomic imprinting is an intrinsic and unique feature of the triploid seed endosperm.


Asunto(s)
Arabidopsis/genética , Genoma de Planta/genética , Impresión Genómica , Transcriptoma , Alelos , Arabidopsis/crecimiento & desarrollo , Diploidia , Endospermo/genética , Endospermo/crecimiento & desarrollo , Epigenómica , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ARN , Triploidía
8.
New Phytol ; 209(2): 590-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26395035

RESUMEN

Heterosis is the phenomenon whereby hybrid offspring of genetically divergent parents display superior characteristics compared with their parents. Although hybridity and polyploidy can influence heterosis in hybrid plants, the differential contributions of hybridity vs polyploidy to heterosis effects remain unknown. To address this question, we investigated heterosis effects on rosette size and growth rate of 88 distinct F1 lines of Arabidopsis thaliana consisting of diploids, reciprocal triploids and tetraploids in isogenic and hybrid genetic contexts. 'Heterosis without hybridity' effects on plant size can be generated in genetically isogenic F1 triploid plants. Paternal genome excess F1 triploids display positive heterosis, whereas maternal genome excess F1 s display negative heterosis effects. Paternal genome dosage increases plant size in F1 hybrid triploid plants by, on average, 57% (in contrast with 35% increase displayed by F1 diploid hybrids). Such effects probably derive from differential seed size, as the growth rate of triploids was similar to diploids. Tetraploid plants display a lower growth rate compared with other ploidies, whereas hybrids display increased early stage growth rate. By disaggregating heterosis effects caused by hybridity vs genome dosage, we advance our understanding of heterosis in plants and facilitate novel paternal genome dosage-based strategies to enhance heterosis effects in crop plants.


Asunto(s)
Arabidopsis/genética , Vigor Híbrido , Poliploidía , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Genoma de Planta , Hibridación Genética , Semillas/anatomía & histología , Semillas/genética , Triploidía
9.
Ann Bot ; 118(5): 957-969, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27497241

RESUMEN

Background and Aims Improved understanding of the secondary gene pools of crops is essential for advancing genetic gain in breeding programmes. Common bean, Phaseolus vulgaris, is a staple crop with several wild relatives in its secondary gene pool. The year-long bean, P. dumosus, an important crop in Guatemala, is considered particularly closely related to P. vulgaris and a potential source of novel variation. However, the genetic diversity and relationship to other Phaseolus species of P. dumosus remain unclear. Methods We conducted the first comprehensive investigation of P. dumosus genetic diversity using both nuclear and chloroplast genome markers. Our nuclear marker set included over 700 markers present within the Phaseolus DArT (Diversity Arrays Technology) array, which we applied to P. dumosus and other relatives of P. vulgaris (including every secondary gene pool species: P. acutifolius, P. albescens, P. coccineus and P. costaricensis). Key Results Phaseolus dumosus arose from hybridization of P. vulgaris and P. coccineus, followed by at least two later hybridizations with sympatric congener populations. Existing P. dumosus collections have low genetic diversity. Conclusions The under-utilized crop P. dumosus has a complex hybrid origin. Further sampling in the region in which it arose may uncover additional germplasm for introgressing favourable traits into crops within the P. vulgaris gene pool.

10.
R Soc Open Sci ; 11(5): 231766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721127

RESUMEN

Improving the salt stress tolerance of crops is an important goal in plant breeding. Changes in the number of chromosome sets (i.e. ploidy level) cause genome dosage effects which can result in enhanced or novel traits. Maternal inheritance versus paternal inheritance of the same chromosome sets can have differential epigenetic effects on traits of F1 offspring. Hence, genome dosage effects can be parent-of-origin independent or dependent. The model plant Arabidopsis thaliana displays both genome dosage and parent-of-origin effects on plant growth under non-stress conditions. Using an isogenic ploidy series of diploid, triploid and tetraploid lines, we investigate the extent of genome dosage effects and their parent-of-origin dependency on in vitro salt stress tolerance of seedlings across 10 different A. thaliana accessions (genetic backgrounds). We detected genome dosage effects on salt stress tolerance for tetraploid lines in five accessions. In addition, through the generation of isogenic reciprocal F1 triploid lines, both parent-of-origin dependent and independent genome dosage effects on salt stress tolerance were detected. Thus, our results indicate not only that genome dosage balance effects can have significant impacts on abiotic stress tolerance in A. thaliana but also that parent-of-origin specific genome dosage effects can affect salt stress tolerance in plants.

11.
Front Genet ; 15: 1353289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38456017

RESUMEN

The suboptimal productivity of maize systems in sub-Saharan Africa (SSA) is a pressing issue, with far-reaching implications for food security, nutrition, and livelihood sustainability within the affected smallholder farming communities. Dissecting the genetic basis of grain protein, starch and oil content can increase our understanding of the governing genetic systems, improve the efficacy of future breeding schemes and optimize the end-use quality of tropical maize. Here, four bi-parental maize populations were evaluated in field trials in Kenya and genotyped with mid-density single nucleotide polymorphism (SNP) markers. Genotypic (G), environmental (E) and G×E variations were found to be significant for all grain quality traits. Broad sense heritabilities exhibited substantial variation (0.18-0.68). Linkage mapping identified multiple quantitative trait loci (QTLs) for the studied grain quality traits: 13, 7, 33, 8 and 2 QTLs for oil content, protein content, starch content, grain texture and kernel weight, respectively. The co-localization of QTLs identified in our research suggests the presence of shared genetic factors or pleiotropic effects, implying that specific genomic regions influence the expression of multiple grain quality traits simultaneously. Genomic prediction accuracies were moderate to high for the studied traits. Our findings highlight the polygenic nature of grain quality traits and demonstrate the potential of genomic selection to enhance genetic gains in maize breeding. Furthermore, the identified genomic regions and single nucleotide polymorphism markers can serve as the groundwork for investigating candidate genes that regulate grain quality traits in tropical maize. This, in turn, can facilitate the implementation of marker-assisted selection (MAS) in breeding programs focused on improving grain nutrient levels.

12.
New Phytol ; 198(1): 71-81, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23368793

RESUMEN

Polyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessions to a tetraploid Ler-0 line. All F1 hybrid triploid genotypes exhibited dramatically reduced ovule fertility, while variation in ovule number per silique was observed across different F1 triploid genotypes. These two reproductive traits were negatively correlated suggesting a trade-off between increased ovule number and ovule fertility. Furthermore, the ovule fertility of the F1 hybrid triploids displayed both hybrid dysgenesis and hybrid advantage (heterosis) effects. Strikingly, both reproductive traits (ovule fertility, ovule number) displayed epigenetic parent-of-origin effects between genetically identical reciprocal F1 hybrid triploid pairs. In some F1 triploid genotypes, the maternal genome excess F1 hybrid triploid was more fertile, whilst for other accessions the paternal genome excess F1 hybrid triploid was more fertile. Male gametogenesis was not significantly disrupted in F1 triploids. Fertility variation in the F1 triploid A. thaliana is mainly the result of disrupted ovule development. Overall, we demonstrate that in F1 triploid plants both ovule fertility and ovule number are subject to parent-of-origin effects that are genome dosage-dependent.


Asunto(s)
Arabidopsis/genética , Cruzamientos Genéticos , Hibridación Genética , Patrón de Herencia/genética , Óvulo Vegetal/genética , Poliploidía , Autofecundación/genética , Arabidopsis/fisiología , Diploidia , Fertilidad , Genotipo , Vigor Híbrido/genética , Óvulo Vegetal/fisiología , Polen/genética , Semillas/genética
13.
Genome Biol Evol ; 15(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931037

RESUMEN

The evolution and diversification of proteins capable of remodeling domains has been critical for transcriptional reprogramming during cell fate determination in multicellular eukaryotes. Chromatin remodeling proteins of the CHD3 family have been shown to have important and antagonistic impacts on seed development in the model plant, Arabidopsis thaliana, yet the basis of this functional divergence remains unknown. In this study, we demonstrate that genes encoding the CHD3 proteins PICKLE (PKL) and PICKLE-RELATED 2 (PKR2) originated from a duplication event during the diversification of crown Brassicaceae, and that these homologs have undergone distinct evolutionary trajectories since this duplication, with PKR2 fast evolving under positive selection, while PKL is subject to purifying selection. We find that the rapid evolution of PKR2 under positive selection reduces the encoded protein's intrinsic disorder, possibly suggesting a tertiary structure configuration which differs from that of PKL. Our whole genome transcriptome analysis in seeds of pkr2 and pkl mutants reveals that they act antagonistically on the expression of specific sets of genes, providing a basis for their differing roles in seed development. Our results provide insights into how gene duplication and neofunctionalization can lead to differing and antagonistic selective pressures on transcriptomes during plant reproduction, as well as on the evolutionary diversification of the CHD3 family within seed plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Factores de Transcripción/genética , Transcriptoma , Duplicación de Gen
14.
Trends Plant Sci ; 28(6): 685-697, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36764870

RESUMEN

Mutations with deleterious consequences in nature may be conditionally deleterious in crop plants. That is, while some genetic variants may reduce fitness under wild conditions and be subject to purifying selection, they can be under positive selection in domesticates. Such deleterious alleles can be plant breeding targets, particularly for complex traits. The difficulty of distinguishing favorable from unfavorable variants reduces the power of selection, while favorable trait variation and heterosis may be attributable to deleterious alleles. Here, we review the roles of deleterious mutations in crop breeding and discuss how they can be used as a new avenue for crop improvement with emerging genomic tools, including HapMaps and pangenome analysis, aiding the identification, removal, or exploitation of deleterious mutations.


Asunto(s)
Evolución Biológica , Pool de Genes , Mutación/genética , Genómica , Fenotipo , Genoma de Planta/genética , Fitomejoramiento
15.
Front Plant Sci ; 13: 835219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330872

RESUMEN

Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.

16.
Sci Rep ; 12(1): 20512, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443389

RESUMEN

Forage grasses are central feed resources for livestock globally. In Ethiopian dairy systems, they serve as feed sources during both wet and dry seasons, yet escalating climate change could threaten forage supply. Here, we investigate projected climate change impacts on three forage grasses currently recommended for Ethiopian dairy systems. We determine areas of geographical suitability for each species using three climate projections generated by General Circulation Models (GCMs) and calculate their ability to meet predicted dry matter demand under four scenarios for livestock intensification and land availability. By 2050, Buffel grass (Cenchrus ciliaris) is likely to be negatively affected by climate change in regions such as Tigray, while Rhodes grass (Chloris gayana) and Napier grass (Cenchrus purpureus) may have improved suitability under future climates. Our findings suggest that feed demands could theoretically be met by production of these forage grasses under current and future climates. However, if land availability is reduced and herd composition shifts towards higher-productivity exotic breeds, forage resources will not meet cattle demand even with improved agronomic management.


Asunto(s)
Cenchrus , Cambio Climático , Animales , Bovinos , Humanos , Etiopía , Fitomejoramiento , Población Negra , Ganado
17.
Plant Reprod ; 35(3): 189-204, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35247095

RESUMEN

Plastid ribosomal proteins (PRPs) can play essential roles in plastid ribosome functioning that affect plant function and development. However, the roles of many PRPs remain unknown, including elucidation of which PRPs are essential or display redundancy. Here, we report that the nuclear-encoded PLASTID RIBOSOMAL PROTEIN L5 (PRPL5) is essential for early embryo development in A. thaliana, as homozygous loss-of-function mutations in the PRPL5 gene impairs chloroplast development and leads to embryo failure to develop past the globular stage. We confirmed the prpl5 embryo-lethal phenotype by generating a mutant CRISPR/Cas9 line and by genetic complementation. As PRPL5 underwent transfer to the nuclear genome early in the evolution of Embryophyta, PRPL5 can be expected to have acquired a chloroplast transit peptide. We identify and validate the presence of an N-terminal chloroplast transit peptide, but unexpectedly also confirm the presence of a conserved and functional Nuclear Localization Signal on the protein C-terminal end. This study highlights the fundamental role of the plastid translation machinery during the early stages of embryo development in plants and raises the possibility of additional roles of plastid ribosomal proteins in the nucleus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas , Mutación , Plastidios/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
18.
Microbiol Spectr ; 10(6): e0222922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409097

RESUMEN

RT-PCR tests based on RNA extraction from nasopharyngeal swabs (NPS) are promoted as the "gold standard" for SARS-CoV-2 detection. However, the use of saliva samples offers noninvasive self-collection more suitable for high-throughput testing. This study evaluated performance of the TaqPath COVID-19 Fast PCR Combo kit 2.0 assay for detection of SARS-CoV-2 in raw saliva relative to a lab-developed direct RT-PCR test (SalivaDirect-based PCR, SDB-PCR) and an RT-PCR test based on RNA extraction from NPS. Saliva and NPS samples were collected from symptomatic and asymptomatic individuals (N = 615). Saliva samples were tested for SARS-CoV-2 using the TaqPath COVID-19 Fast PCR Combo kit 2.0 and the SDB-PCR, while NPS samples were tested by RT-PCR in RNA extracts according to the Irish national testing system. TaqPath COVID-19 Fast PCR Combo kit 2.0 detected SARS-CoV-2 in 52 saliva samples, of which 51 were also positive with the SDB-PCR. Compared to the NPS "gold standard" biospecimen method, 49 samples displayed concordant results, while three samples (35

Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Pandemias , Saliva , COVID-19/diagnóstico , ARN , Manejo de Especímenes
19.
BMC Plant Biol ; 11: 113, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21838868

RESUMEN

BACKGROUND: Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. RESULTS: cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. CONCLUSIONS: Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas , Impresión Genómica , Semillas/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Biología Computacional , Metilación de ADN , ADN Complementario/genética , ADN de Plantas/genética , Endospermo/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Programas Informáticos
20.
Chromosoma ; 118(1): 11-23, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18925405

RESUMEN

The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.


Asunto(s)
Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animales , Evolución Biológica , Nucléolo Celular/química , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Células Eucariotas , Humanos , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA