Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(29): 19792-19799, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994607

RESUMEN

Interests in covalent drugs have grown in modern drug discovery as they could tackle challenging targets traditionally considered "undruggable". The identification of covalent binders to target proteins typically involves directly measuring protein covalent modifications using high-resolution mass spectrometry. With a continually expanding library of compounds, conventional mass spectrometry platforms such as LC-MS and SPE-MS have become limiting factors for high-throughput screening. Here, we introduce a prototype high-resolution acoustic ejection mass spectrometry (AEMS) system for the rapid screening of a covalent modifier library comprising ∼10,000 compounds against a 50 kDa-sized target protein─Werner syndrome helicase. The screening samples were arranged in a 1536-well format. The sample buffer containing high-concentration salts was directly analyzed without any cleanup steps, minimizing sample preparation efforts and ensuring protein stability. The entire AEMS analysis process could be completed within a mere 17 h. An automated data analysis tool facilitated batch processing of the sample data and quantitation of the formation of various covalent protein-ligand adducts. The screening results displayed a high degree of fidelity, with a Z' factor of 0.8 and a hit rate of 2.3%. The identified hits underwent orthogonal testing in a biochemical activity assay, revealing that 75% were functional antagonists of the target protein. Notably, a comparative analysis with LC-MS showcased the AEMS platform's low risk of false positives or false negatives. This innovative platform has enabled robust high-throughput covalent modifier screening, featuring a 10-fold increase in library size and a 10- to 100-fold increase in throughput when compared with similar reports in the existing literature.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas , Espectrometría de Masas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/química , Humanos , Acústica , Descubrimiento de Drogas/métodos , Ligandos
2.
Anal Chem ; 96(3): 1138-1146, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165811

RESUMEN

Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.


Asunto(s)
Desarrollo de Medicamentos , Acústica , Espectrometría de Masas/métodos , Péptidos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA