Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 34(3): 1133-1142, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28976770

RESUMEN

Adhesion of bacteria to interfaces is the first step in pathogenic infection, in biofilm formation, and in bioremediation of oil spills and other pollutants. Bacteria use a variety of surface structures to promote interfacial adhesion, with the level of expression of these structures varying in response to local conditions and environmental signals. Here, we investigated how overexpression of type 1 fimbriae, one such appendage, modifies the ability of Escherichia coli to adhere to solid substrates, via biofilm formation and yeast agglomeration, and to oil/water interfaces, via a microbial adhesion to hydrocarbon assay. A plasmid that enables inducible expression of E. coli MG1655 type 1 fimbriae was transformed into fimbriae-deficient mutant strain MG1655ΔfimA. The level of fimH gene expression in the engineered strain, measured using quantitative real-time PCR, could be tuned by changing the concentration of inducer isopropyl ß-d-1-thiogalactopyranoside (IPTG), and was higher than that in strain MG1655. Increasing the degree of fimbriation only slightly modified the surface energy and zeta potential of the bacteria, but enhanced their ability to agglomerate yeast cells and to adhere to solid substrates (as measured by biofilm formation) and to oil/water interfaces. We anticipate that the tunable extent of fimbriation accessible with this engineered strain can be used to investigate how adhesin expression modifies the ability of bacteria to adhere to interfaces and to actively self-assemble there.


Asunto(s)
Adhesión Bacteriana , Escherichia coli/citología , Escherichia coli/fisiología , Fimbrias Bacterianas/metabolismo , Estrés Mecánico , Propiedades de Superficie , Termodinámica
2.
Langmuir ; 32(21): 5422-33, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27158837

RESUMEN

We investigate the deposition and transient adhesion of Escherichia coli on alkyl and fluoroalkyl silanized glass surfaces of different carbon chain lengths. The rate at which bacteria deposit onto these surfaces decreases as the shear stress is increased from 3 to 67 mPa, but trends in the deposition rate across all surfaces cannot be predicted from extended DLVO calculations of the interaction potential. As the surface root-mean-square (rms) roughness increases, the deposition rate increases and the percentage of motile tethered cells decreases. Furthermore, on surfaces of root-mean-square roughness of less than 0.2 nm, bacteria exhibit mobile adhesion, for which surface-associated cells linearly translate distances greater than approximately 1.5 times their average body length along the flow direction. E. coli bacteria with and without flagella exhibit mobile adhesion, indicating that this behavior is not driven by these appendages. Cells that express fimbriae do not exhibit mobile adhesion. These results suggest that even subnanoscale roughness can influence the deposition and transient adhesion of bacteria and imply that strategies to reduce frictional interactions by making cells or surfaces smoother may help to control the initial fouling of surfaces by E. coli bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA