RESUMEN
Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied. We used monozygotic twins discordant for SCZ and healthy individuals to generate human induced pluripotent stem cell-derived microglia to assess the transcriptional and functional differences in microglia between healthy controls, affected twins and unaffected twins. The microglia from affected twins had increased expression of several common inflammation-related genes compared to healthy individuals. Microglia from affected twins had also reduced response to interleukin 1 beta (IL1ß) treatment, but no significant differences in migration or phagocytotic activity. Ingenuity Pathway Analysis (IPA) showed abnormalities related to extracellular matrix signaling. RNA sequencing predicted downregulation of extracellular matrix structure constituent Gene Ontology (GO) terms and hepatic fibrosis pathway activation that were shared by microglia of both affected and unaffected twins, but the upregulation of major histocompatibility complex (MHC) class II receptors was observed only in affected twin microglia. Also, the microglia of affected twins had heterogeneous response to clozapine, minocycline, and sulforaphane treatments. Overall, despite the increased expression of inflammatory genes, we observed no clear functional signs of hyperactivation in microglia from patients with SCZ. We conclude that microglia of the patients with SCZ have gene expression aberrations related to inflammation response and extracellular matrix without contributing to increased microglial activation.
Asunto(s)
Microglía , Esquizofrenia , Gemelos Monocigóticos , Humanos , Microglía/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Adulto , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Sulfóxidos/farmacología , Inflamación/genética , Inflamación/metabolismo , Persona de Mediana Edad , IsotiocianatosRESUMEN
Frontotemporal dementia (FTD) is a common cause of early-onset dementia, with no current treatment options. FTD linked to chromosome 3 (FTD3) is a rare sub-form of the disease, caused by a point mutation in the Charged Multivesicular Body Protein 2B (CHMP2B). This mutation causes neuronal phenotypes, such as mitochondrial deficiencies, accompanied by metabolic changes and interrupted endosomal-lysosomal fusion. However, the contribution of glial cells to FTD3 pathogenesis has, until recently, been largely unexplored. Glial cells play an important role in most neurodegenerative disorders as drivers and facilitators of neuroinflammation. Microglia are at the center of current investigations as potential pro-inflammatory drivers. While gliosis has been observed in FTD3 patient brains, it has not yet been systematically analyzed. In the light of this, we investigated the role of microglia in FTD3 by implementing human induced pluripotent stem cells (hiPSC) with either a heterozygous or homozygous CHMP2B mutation, introduced into a healthy control hiPSC line via CRISPR-Cas9 precision gene editing. These hiPSC were differentiated into microglia to evaluate the pro-inflammatory profile and metabolic state. Moreover, hiPSC-derived neurons were cultured with conditioned microglia media to investigate disease specific interactions between the two cell populations. Interestingly, we identified two divergent inflammatory microglial phenotypes resulting from the underlying mutations: a severe pro-inflammatory profile in CHMP2B homozygous FTD3 microglia, and an "unresponsive" CHMP2B heterozygous FTD3 microglial state. These findings correlate with our observations of increased phagocytic activity in CHMP2B homozygous, and impaired protein degradation in CHMP2B heterozygous FTD3 microglia. Metabolic mapping confirmed these differences, revealing a metabolic reprogramming of the CHMP2B FTD3 microglia, displayed as a compensatory up-regulation of glutamine metabolism in the CHMP2B homozygous FTD3 microglia. Intriguingly, conditioned CHMP2B homozygous FTD3 microglia media caused neurotoxic effects, which was not evident for the heterozygous microglia. Strikingly, IFN-γ treatment initiated an immune boost of the CHMP2B heterozygous FTD3 microglia, and conditioned microglia media exposure promoted neural outgrowth. Our findings indicate that the microglial profile, activity, and behavior is highly dependent on the status of the CHMP2B mutation. Our results suggest that the heterozygous state of the mutation in FTD3 patients could potentially be exploited in form of immune-boosting intervention strategies to counteract neurodegeneration.
Asunto(s)
Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células Madre Pluripotentes Inducidas/metabolismo , Microglía/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismoRESUMEN
Defects in interleukin-1ß (IL-1ß)-mediated cellular responses contribute to Alzheimer's disease (AD). To decipher the mechanism associated with its pathogenesis, we investigated the molecular events associated with the termination of IL-1ß inflammatory responses by focusing on the role played by the target of Myb1 (TOM1), a negative regulator of the interleukin-1ß receptor-1 (IL-1R1). We first show that TOM1 steady-state levels are reduced in human AD hippocampi and in the brain of an AD mouse model versus respective controls. Experimentally reducing TOM1 affected microglia activity, substantially increased amyloid-beta levels, and impaired cognition, whereas enhancing its levels was therapeutic. These data show that reparation of the TOM1-signaling pathway represents a therapeutic target for brain inflammatory disorders such as AD. A better understanding of the age-related changes in the immune system will allow us to craft therapies to limit detrimental aspects of inflammation, with the broader purpose of sharply reducing the number of people afflicted by AD.
RESUMEN
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or - following major injuries - by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Asunto(s)
Señalización del Calcio , Calcio , Movimiento Celular , Retículo Endoplásmico , Células Madre Pluripotentes Inducidas , Microglía , Humanos , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , QuimiotaxisRESUMEN
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
RESUMEN
Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aß)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.
Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Interferón gamma , Microglía , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Microglía/metabolismo , Humanos , Ratones , Interferón gamma/metabolismo , Ratones TransgénicosRESUMEN
While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.
RESUMEN
Microglia are crucial mediators of brain development and homeostasis. In recent years, it has been additionally suggested that modulation of microglial function may prove to be a useful therapeutic technique in many neurological contexts. However, before we can develop therapeutics, we need to better understand homeostatic microglial processes at the cellular and molecular level. For this reason, it has become crucial to develop better models to study human microglia which are known to be quite distinct from murine models. Here we provide a detailed method to differentiate homeostatic microglia from human pluripotent cells. Additionally, due to the innate sensitivity of these immune cells, we have provided detailed notes for best practices of handling cultured microglia.
Asunto(s)
Células Madre Pluripotentes Inducidas , Microglía , Animales , Citocinas , Humanos , RatonesRESUMEN
In neurodegenerative diseases, extracellular vesicles (EVs) transfer pathogenic molecules and are consequently involved in disease progression. We have investigated the proteomic profiles of EVs that were isolated from four different human-induced pluripotent stem cell-derived neural cell types (excitatory neurons, astrocytes, microglia-like cells, and oligodendrocyte-like cells). Novel cell type-specific EV protein markers were then identified for the excitatory neurons (ATP1A3, NCAM1), astrocytes (LRP1, ITGA6), microglia-like cells (ITGAM, LCP1), and oligodendrocyte-like cells (LAMP2, FTH1), as well as 16 pan-EV marker candidates, including integrins and annexins. To further demonstrate how cell-type-specific EVs may be involved in Alzheimer's disease (AD), we performed protein co-expression network analysis and conducted cell type assessments for the proteomes of brain-derived EVs from the control, mild cognitive impairment, and AD cases. A protein module enriched in astrocyte-specific EV markers was most significantly associated with the AD pathology and cognitive impairment, suggesting an important role in AD progression. The hub protein from this module, integrin-ß1 (ITGB1), was found to be significantly elevated in astrocyte-specific EVs enriched from the total brain-derived AD EVs and associated with the brain ß-amyloid and tau load in independent cohorts. Thus, our study provides a featured framework and rich resource for the future analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/citología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Integrina beta1/metabolismo , Proteoma/metabolismo , Proteínas tau/metabolismoRESUMEN
The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.
Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Adenosina Difosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Señalización del Calcio , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Purinérgicos/metabolismoRESUMEN
Microglia are strongly implicated in the development and progression of Alzheimer's disease (AD), yet their impact on pathology and lifespan remains unclear. Here we utilize a CSF1R hypomorphic mouse to generate a model of AD that genetically lacks microglia. The resulting microglial-deficient mice exhibit a profound shift from parenchymal amyloid plaques to cerebral amyloid angiopathy (CAA), which is accompanied by numerous transcriptional changes, greatly increased brain calcification and hemorrhages, and premature lethality. Remarkably, a single injection of wild-type microglia into adult mice repopulates the microglial niche and prevents each of these pathological changes. Taken together, these results indicate the protective functions of microglia in reducing CAA, blood-brain barrier dysfunction, and brain calcification. To further understand the clinical implications of these findings, human AD tissue and iPSC-microglia were examined, providing evidence that microglia phagocytose calcium crystals, and this process is impaired by loss of the AD risk gene, TREM2.
Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Microglía , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/patología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Glicoproteínas de Membrana , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/patología , Receptores InmunológicosRESUMEN
Variations in many genes linked to sporadic Alzheimer's disease (AD) show abundant expression in microglia, but relationships among these genes remain largely elusive. Here, we establish isogenic human ESC-derived microglia-like cell lines (hMGLs) harboring AD variants in CD33, INPP5D, SORL1, and TREM2 loci and curate a comprehensive atlas comprising ATAC-seq, ChIP-seq, RNA-seq, and proteomics datasets. AD-like expression signatures are observed in AD mutant SORL1 and TREM2 hMGLs, while integrative multi-omic analysis of combined epigenetic and expression datasets indicates up-regulation of APOE as a convergent pathogenic node. We also observe cross-regulatory relationships between SORL1 and TREM2, in which SORL1R744X hMGLs induce TREM2 expression to enhance APOE expression. AD-associated SORL1 and TREM2 mutations also impaired hMGL Aß uptake in an APOE-dependent manner in vitro and attenuated Aß uptake/clearance in mouse AD brain xenotransplants. Using this modeling and analysis platform for human microglia, we provide new insight into epistatic interactions in AD genes and demonstrate convergence of microglial AD genes at the APOE locus.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Variación Genética , Células Madre Embrionarias Humanas/metabolismo , Microglía/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Marcación de Gen , Sitios Genéticos , Humanos , Ratones Transgénicos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutación/genética , Fagocitosis , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genética , Trasplante Heterólogo , Regulación hacia Arriba/genéticaRESUMEN
The discovery of TREM2 as a myeloid-specific Alzheimer's disease (AD) risk gene has accelerated research into the role of microglia in AD. While TREM2 mouse models have provided critical insight, the normal and disease-associated functions of TREM2 in human microglia remain unclear. To examine this question, we profile microglia differentiated from isogenic, CRISPR-modified TREM2-knockout induced pluripotent stem cell (iPSC) lines. By combining transcriptomic and functional analyses with a chimeric AD mouse model, we find that TREM2 deletion reduces microglial survival, impairs phagocytosis of key substrates including APOE, and inhibits SDF-1α/CXCR4-mediated chemotaxis, culminating in an impaired response to beta-amyloid plaques in vivo. Single-cell sequencing of xenotransplanted human microglia further highlights a loss of disease-associated microglial (DAM) responses in human TREM2 knockout microglia that we validate by flow cytometry and immunohistochemistry. Taken together, these studies reveal both conserved and novel aspects of human TREM2 biology that likely play critical roles in the development and progression of AD.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Muerte Celular , Línea Celular , Quimiocina CXCL12/metabolismo , Quimiotaxis , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Fagocitosis , Placa Amiloide/metabolismo , Receptores CXCR4/metabolismo , TranscriptomaRESUMEN
Research into the function of microglia has dramatically accelerated during the last few years, largely due to recent genetic findings implicating microglia in virtually every neurodegenerative disorder. In Alzheimer's disease (AD), a majority of risk loci discovered through genome-wide association studies were found in or near genes expressed most highly in microglia leading to the hypothesis that microglia play a much larger role in disease progression than previously thought. From this body of work produced in the last several years, we find that almost every function of microglia has been proposed to influence the progression of AD from altered phagocytosis and synaptic pruning to cytokine secretion and changes in trophic support. By studying key Alzheimer's risk genes such as TREM2, CD33, ABCA7, and MS4A6A, we will be able to distinguish true disease-modulatory pathways from the full range of microglial-related functions. To successfully carry out these experiments, more advanced microglial models are needed. Microglia are quite sensitive to their local environment, suggesting the need to more fully recapitulate an in vivo environment to study this highly plastic cell type. Likely only by combining the above approaches will the field fully elucidate the molecular pathways that regulate microglia and influence neurodegeneration, in turn uncovering potential new targets for future therapeutic development.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Microglía/metabolismo , Receptores Inmunológicos/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Microglía/patología , Plasticidad Neuronal/genética , Especificidad de Órganos , Fagocitosis/genética , Fenotipo , Receptores Inmunológicos/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismoRESUMEN
iPSC-derived microglia offer a powerful tool to study microglial homeostasis and disease-associated inflammatory responses. Yet, microglia are highly sensitive to their environment, exhibiting transcriptomic deficiencies when kept in isolation from the brain. Furthermore, species-specific genetic variations demonstrate that rodent microglia fail to fully recapitulate the human condition. To address this, we developed an approach to study human microglia within a surrogate brain environment. Transplantation of iPSC-derived hematopoietic-progenitors into the postnatal brain of humanized, immune-deficient mice results in context-dependent differentiation into microglia and other CNS macrophages, acquisition of an ex vivo human microglial gene signature, and responsiveness to both acute and chronic insults. Most notably, transplanted microglia exhibit robust transcriptional responses to Aß-plaques that only partially overlap with that of murine microglia, revealing new, human-specific Aß-responsive genes. We therefore have demonstrated that this chimeric model provides a powerful new system to examine the in vivo function of patient-derived and genetically modified microglia.
Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Expresión Génica , Microglía/metabolismo , Placa Amiloide/genética , Quimera por Trasplante , Animales , Encéfalo/citología , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Ratones , Ratones Transgénicos , Microglía/citología , Trombopoyetina/genéticaRESUMEN
BACKGROUND: Microglia, the principle immune cells of the brain, play important roles in neuronal development, homeostatic function and neurodegenerative disease. Recent genetic studies have further highlighted the importance of microglia in neurodegeneration with the identification of disease risk polymorphisms in many microglial genes. To better understand the role of these genes in microglial biology and disease, we, and others, have developed methods to differentiate microglia from human induced pluripotent stem cells (iPSCs). While the development of these methods has begun to enable important new studies of microglial biology, labs with little prior stem cell experience have sometimes found it challenging to adopt these complex protocols. Therefore, we have now developed a greatly simplified approach to generate large numbers of highly pure human microglia. RESULTS: iPSCs are first differentiated toward a mesodermal, hematopoietic lineage using commercially available media. Highly pure populations of non-adherent CD43+ hematopoietic progenitors are then simply transferred to media that includes three key cytokines (M-CSF, IL-34, and TGFß-1) that promote differentiation of homeostatic microglia. This updated approach avoids the prior requirement for hypoxic incubation, complex media formulation, FACS sorting, or co-culture, thereby significantly simplifying human microglial generation. To confirm that the resulting cells are equivalent to previously developed iPSC-microglia, we performed RNA-sequencing, functional testing, and transplantation studies. Our findings reveal that microglia generated via this simplified method are virtually identical to iPS-microglia produced via our previously published approach. To also determine whether a small molecule activator of TGFß signaling (IDE1) can be used to replace recombinant TGFß1, further reducing costs, we examined growth kinetics and the transcriptome of cells differentiated with IDE1. These data demonstrate that a microglial cell can indeed be produced using this alternative approach, although transcriptional differences do occur that should be considered. CONCLUSION: We anticipate that this new and greatly simplified protocol will enable many interested labs, including those with little prior stem cell or flow cytometry experience, to generate and study human iPS-microglia. By combining this method with other advances such as CRISPR-gene editing and xenotransplantation, the field will continue to improve our understanding of microglial biology and their important roles in human development, homeostasis, and disease.
Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Microglía/metabolismo , Células Madre Pluripotentes/citología , Animales , Citocinas/metabolismo , HumanosRESUMEN
Exposure to the herbicide paraquat (PQ) is associated with an increased risk of idiopathic Parkinson's disease (PD). Therapies based on PQ's presumed mechanisms of action have not, however, yielded effective disease therapies. Cellular senescence is an anticancer mechanism that arrests proliferation of replication-competent cells and results in a pro-inflammatory senescence-associated secretory phenotype (SASP) capable of damaging neighboring tissues. Here, we demonstrate that senescent cell markers are preferentially present within astrocytes in PD brain tissues. Additionally, PQ was found to induce astrocytic senescence and an SASP in vitro and in vivo, and senescent cell depletion in the latter protects against PQ-induced neuropathology. Our data suggest that exposure to certain environmental toxins promotes accumulation of senescent cells in the aging brain, which can contribute to dopaminergic neurodegeneration. Therapies that target senescent cells may constitute a strategy for treatment of sporadic PD, for which environmental exposure is a major risk factor.