Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 18(19): 3615-25, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19592581

RESUMEN

Spinal muscular atrophy (SMA), a recessive genetic disease, affects lower motoneurons leading to denervation, atrophy, paralysis and in severe cases death. Reduced levels of survival motor neuron (SMN) protein cause SMA. As a first step towards generating a genetic model of SMA in zebrafish, we identified three smn mutations. Two of these alleles, smnY262stop and smnL265stop, were stop mutations that resulted in exon 7 truncation, whereas the third, smnG264D, was a missense mutation corresponding to an amino acid altered in human SMA patients. Smn protein levels were low/undetectable in homozygous mutants consistent with unstable protein products. Homozygous mutants from all three alleles were smaller and survived on the basis of maternal Smn dying during the second week of larval development. Analysis of the neuromuscular system in these mutants revealed a decrease in the synaptic vesicle protein, SV2. However, two other synaptic vesicle proteins, synaptotagmin and synaptophysin were unaffected. To address whether the SV2 decrease was due specifically to Smn in motoneurons, we tested whether expressing human SMN protein exclusively in motoneurons in smn mutants could rescue the phenotype. For this, we generated a transgenic zebrafish line with human SMN driven by the motoneuron-specific zebrafish hb9 promoter and then generated smn mutant lines carrying this transgene. We found that introducing human SMN specifically into motoneurons rescued the SV2 decrease observed in smn mutants. Our analysis indicates the requirement for Smn in motoneurons to maintain SV2 in presynaptic terminals indicating that Smn, either directly or indirectly, plays a role in presynaptic integrity.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Mutación , Unión Neuromuscular/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Humanos , Datos de Secuencia Molecular , Atrofia Muscular Espinal/genética , Unión Neuromuscular/genética , Alineación de Secuencia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
J Cell Biol ; 162(5): 919-31, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12952942

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of alpha motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron development. Using antisense morpholinos to reduce Smn levels throughout the entire embryo, we found motor axon-specific pathfinding defects. Reduction of Smn in individual motoneurons revealed that smn is acting cell autonomously. These results show for the first time, in vivo, that Smn functions in motor axon development and suggest that these early developmental defects may lead to subsequent motoneuron loss.


Asunto(s)
Axones/metabolismo , Movimiento Celular/fisiología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pez Cebra/embriología , Animales , Muerte Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Humanos , Hibridación in Situ , Neuronas Motoras/citología , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular , Oligonucleótidos Antisentido/metabolismo , Proteínas de Unión al ARN , Receptores Colinérgicos/metabolismo , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Pez Cebra/anatomía & histología , Pez Cebra/fisiología
3.
J Neurosci ; 26(43): 11014-22, 2006 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17065443

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron degenerative disease caused by low levels of the survival motor neuron (SMN) protein and is linked to mutations or loss of SMN1 and retention of SMN2. How low levels of SMN cause SMA is unclear. SMN functions in small nuclear ribonucleoprotein (snRNP) biogenesis, but recent studies indicate that SMN may also function in axons. We showed previously that decreasing Smn levels in zebrafish using morpholinos (MO) results in motor axon defects. To determine how Smn functions in motor axon outgrowth, we coinjected smn MO with various human SMN RNAs and assayed the effect on motor axons. Wild-type SMN rescues motor axon defects caused by Smn reduction in zebrafish. Consistent with these defects playing a role in SMA, SMN lacking exon 7, the predominant form from the SMN2 gene, and human SMA mutations do not rescue defective motor axons. Moreover, the severity of the motor axon defects correlates with decreased longevity. We also show that a conserved region in SMN exon 7, QNQKE, is critical for motor axon outgrowth. To address the function of SMN important for motor axon outgrowth, we determined the ability of different SMN forms to oligomerization and bind Sm protein, functions required for snRNP biogenesis. We identified mutations that failed to rescue motor axon defects but retained snRNP function. Thus, we have dissociated the snRNP function of SMN from its function in motor axons. These data indicate that SMN has a novel function in motor axons that is relevant to SMA and is independent of snRNP biosynthesis.


Asunto(s)
Axones/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Secuencia de Aminoácidos , Animales , Células Cultivadas , Embrión de Pollo , Humanos , Datos de Secuencia Molecular , Mutación , Fenotipo , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Pez Cebra
4.
J Child Neurol ; 22(8): 995-1003, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17761655

RESUMEN

Motoneuron diseases cause paralysis and death due to loss of motoneurons that innervate skeletal muscle. Spinal muscular atrophy is a human motoneuron disease that is genetically linked to the survival motor neuron gene (SMN). Although SMN was identified more than a decade ago, it remains unclear how decreased levels of the SMN protein cause spinal muscular atrophy. The use of animal models, however, offers a crucial tool in determining the function of SMN in this disease. In this review, we discuss our efforts to develop a zebrafish model of spinal muscular atrophy.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Predisposición Genética a la Enfermedad/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Diferenciación Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/fisiopatología , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Pez Cebra/metabolismo
5.
Mech Dev ; 122(10): 1073-86, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16129585

RESUMEN

Roundabout (Robo) receptors and their secreted ligand Slits have been shown to function in a number of developmental events both inside and outside of the nervous system. We previously cloned zebrafish robo orthologs to gain a better understanding of Robo function in vertebrates. Further characterization of one of these orthologs, robo3, has unveiled the presence of two distinct isoforms, robo3 variant 1 (robo3var1) and robo3 variant 2 (robo3var2). These two isoforms differ only in their 5'-ends with robo3var1, but not robo3var2, containing a canonical signal sequence. Despite this difference, both forms accumulate on the cell surface. Both isoforms are contributed maternally and exhibit unique and dynamic gene expression patterns during development. Functional analysis of robo3 isoforms using an antisense gene knockdown strategy suggests that Robo3var1 functions in motor axon pathfinding, whereas Robo3var2 appears to function in dorsoventral cell fate specification. This study reveals a novel function for Robo receptors in specifying ventral cell fates during vertebrate development.


Asunto(s)
Proteínas de Drosophila/fisiología , Sistema Nervioso/embriología , Receptores Inmunológicos/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Mutación , Sistema Nervioso/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Receptores Inmunológicos/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Zebrafish ; 9(4): 169-78, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23094693

RESUMEN

In the United States, Sevin(™) brand insecticide is one of the most commonly used insecticides. The active ingredient in Sevin(™), carbaryl (1-napthyl-N-methylcarbamate), is a known acetylcholinesterase (AChE) inhibitor that prevents the breakdown of acetylcholine to acetate and choline at the synapse. While carbaryl successfully causes the death of insects by paralysis, it has also been shown to have negative effects on the development of several nontarget species. To study the effects of carbaryl on nontarget species, zebrafish (Danio rerio) were used, as they are a good model for both toxicology and development studies. Our study suggests that carbaryl induces changes in morphology, specifically in embryo size and shape. Additionally, carbaryl causes defects in heart formation that is characterized by a decrease in heart rate and a developmental delay/defect in cardiac looping. A significant decrease in the number of spinal cord neurons present was also observed. Further investigation showed that there was an increase in cell death in carbaryl-treated embryos. The results indicate that carbaryl may have a greater environmental impact than initially intended. Our study, which was conducted solely by undergraduates at a liberal arts college, indicates that carbaryl may be detrimental to the development of nontarget species.


Asunto(s)
Carbaril/toxicidad , Embrión no Mamífero/efectos de los fármacos , Insecticidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/metabolismo , Corazón/efectos de los fármacos , Sistema Nervioso/efectos de los fármacos , Pez Cebra/metabolismo
7.
Dev Neurobiol ; 68(2): 182-94, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18000835

RESUMEN

A paramount question in spinal muscular atrophy (SMA) research is why reduced levels of SMN, a ubiquitously expressed protein, leads to a motoneuron-specific disease. It has been hypothesized that SMN may have a dual function: a role in snRNP assembly and a novel function that affects axons. We have previously shown that decreasing Smn levels in zebrafish causes defects in motor axon outgrowth. To determine whether decreasing other components of the snRNP complex would also cause motor axon defects, we knocked down Gemin2, a SMN binding protein involved in snRNP assembly. Moderate knockdown of Gemin2 yields a large percentage of morphologically abnormal embryos with shortened trunks and overall delayed development. Examination of motor axons revealed that only embryos with abnormal body morphology had aberrant motor axons indicating that the motor axon defects are secondary to the overall body defects observed in these embryos. To directly test this, we knocked down Gemin2 specifically in motoneurons using two separate approaches and found that motor axons developed normally. Furthermore, wild-type neurons transplanted into morphologically abnormal gemin2 morphants had aberrant motor axons indicating that the motor axon defects observed when Gemin2 is decreased are secondary to the defects in body morphology. These data show that reduction of Gemin2, unlike reduction of SMN, in zebrafish embryos does not directly cause motor axon outgrowth defects. Since Gemin2 and SMN both function in snRNP biogenesis yet only SMN knockdown causes motor axon defects, these data are consistent with an additional role for SMN that is snRNP independent.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Conos de Crecimiento/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Proteínas Portadoras/genética , Diferenciación Celular/genética , Regulación hacia Abajo/genética , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/ultraestructura , Péptidos y Proteínas de Señalización Intracelular , Neuronas Motoras/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Interferencia de ARN , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Proteínas de Pez Cebra/genética
8.
Science ; 320(5875): 524-7, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18440926

RESUMEN

Homozygous deletion of the survival motor neuron 1 gene (SMN1) causes spinal muscular atrophy (SMA), the most frequent genetic cause of early childhood lethality. In rare instances, however, individuals are asymptomatic despite carrying the same SMN1 mutations as their affected siblings, thereby suggesting the influence of modifier genes. We discovered that unaffected SMN1-deleted females exhibit significantly higher expression of plastin 3 (PLS3) than their SMA-affected counterparts. We demonstrated that PLS3 is important for axonogenesis through increasing the F-actin level. Overexpression of PLS3 rescued the axon length and outgrowth defects associated with SMN down-regulation in motor neurons of SMA mouse embryos and in zebrafish. Our study suggests that defects in axonogenesis are the major cause of SMA, thereby opening new therapeutic options for SMA and similar neuromuscular diseases.


Asunto(s)
Actinas/genética , Actinas/metabolismo , Axones/fisiología , Atrofia Muscular Espinal/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Actinas/sangre , Animales , Axones/metabolismo , Axones/ultraestructura , Diferenciación Celular , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Expresión Génica , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Humanos , Masculino , Glicoproteínas de Membrana , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fosfoproteínas/sangre , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora , Transcripción Genética , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA