RESUMEN
Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.
Asunto(s)
Macrófagos , Neoplasias , Sepsis , Humanos , Sepsis/inmunología , Macrófagos/inmunología , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animales , Linfocitos T/inmunología , Receptores CCR2/metabolismo , Persona de Mediana Edad , Ratones , Anciano , Quimiocinas/metabolismo , AdultoRESUMEN
Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.
Asunto(s)
Epigénesis Genética , Inflamación/etiología , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Animales , Biomarcadores , Reprogramación Celular , Citocinas/metabolismo , Humanos , Tolerancia Inmunológica , Inmunofenotipificación , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos Alveolares/inmunología , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Fagocitosis/inmunología , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The antigen-presenting molecule MR1 presents vitamin B-related antigens (VitB antigens) to mucosal-associated invariant T (MAIT) cells through an uncharacterized pathway. We show that MR1, unlike other antigen-presenting molecules, does not constitutively present self-ligands. In the steady state it accumulates in a ligand-receptive conformation within the endoplasmic reticulum. VitB antigens reach this location and form a Schiff base with MR1, triggering a 'molecular switch' that allows MR1-VitB antigen complexes to traffic to the plasma membrane. These complexes are endocytosed with kinetics independent of the affinity of the MR1-ligand interaction and are degraded intracellularly, although some MR1 molecules acquire new ligands during passage through endosomes and recycle back to the surface. MR1 antigen presentation is characterized by a rapid 'off-on-off' mechanism that is strictly dependent on antigen availability.
Asunto(s)
Presentación de Antígeno/inmunología , Antígenos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Transducción de Señal/inmunología , Antígenos/metabolismo , Línea Celular , Membrana Celular/inmunología , Membrana Celular/metabolismo , Células Cultivadas , Endocitosis/inmunología , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Endosomas/inmunología , Endosomas/metabolismo , Células HeLa , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Immunoblotting , Espacio Intracelular/inmunología , Espacio Intracelular/metabolismo , Microscopía Confocal , Antígenos de Histocompatibilidad Menor , Unión Proteica/inmunología , Transporte de Proteínas/inmunología , Complejo Vitamínico B/inmunologíaRESUMEN
Lung infections cause prolonged immune alterations and elevated susceptibility to secondary pneumonia. We found that, after resolution of primary viral or bacterial pneumonia, dendritic cells (DC), and macrophages exhibited poor antigen-presentation capacity and secretion of immunogenic cytokines. Development of these "paralyzed" DCs and macrophages depended on the immunosuppressive microenvironment established upon resolution of primary infection, which involved regulatory T (Treg) cells and the cytokine TGF-ß. Paralyzed DCs secreted TGF-ß and induced local Treg cell accumulation. They also expressed lower amounts of IRF4, a transcription factor associated with increased antigen-presentation capacity, and higher amounts of Blimp1, a transcription factor associated with tolerogenic functions, than DCs present during primary infection. Blimp1 expression in DC of humans suffering sepsis or trauma correlated with severity and complicated outcomes. Our findings describe mechanisms underlying sepsis- and trauma-induced immunosuppression, reveal prognostic markers of susceptibility to secondary infections and identify potential targets for therapeutic intervention.
Asunto(s)
Células Dendríticas/inmunología , Infecciones por Escherichia coli/inmunología , Virus de la Influenza A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía/inmunología , Sepsis/inmunología , Anciano , Animales , Presentación de Antígeno , Diferenciación Celular , Células Cultivadas , Escherichia coli , Femenino , Humanos , Tolerancia Inmunológica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
RESUMEN
Hexanucleotide expansion mutations in C9ORF72 are a frequent cause of amyotrophic lateral sclerosis. We previously reported that long arginine-rich dipeptide repeats (DPRs), mimicking abnormal proteins expressed from the hexanucleotide expansion, caused translation stalling when expressed in cell culture models. Whether this stalling provides a mechanism of pathogenicity remains to be determined. Here, we explored the molecular features of DPR-induced stalling and examined whether known mechanisms such as ribosome quality control (RQC) regulate translation elongation on sequences that encode arginine-rich DPRs. We demonstrate that arginine-rich DPRs lead to stalling in a length-dependent manner, with lengths longer than 40 repeats invoking severe translation arrest. Mutational screening of 40×Gly-Xxx DPRs shows that stalling is most pronounced when Xxx is a charged amino acid (Arg, Lys, Glu, or Asp). Through a genome-wide knockout screen, we find that genes regulating stalling on polyadenosine mRNA coding for poly-Lys, a canonical RQC substrate, act differently in the case of arginine-rich DPRs. Indeed, these findings point to a limited scope for natural regulatory responses to resolve the arginine-rich DPR stalls, even though the stalls may be sensed, as evidenced by an upregulation of RQC gene expression. These findings therefore implicate arginine-rich DPR-mediated stalled ribosomes as a source of stress and toxicity and may be a crucial component in pathomechanisms.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Arginina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipéptidos/química , Ribosomas/genética , Ribosomas/metabolismo , Técnicas de Inactivación de Genes , Mutación , Regulación hacia ArribaRESUMEN
The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.
Asunto(s)
Herpesvirus Humano 3 , Antígenos de Histocompatibilidad Clase I , Animales , Herpesvirus Humano 3/genética , Ligandos , Antígenos de Histocompatibilidad Menor , Complejo Mayor de Histocompatibilidad , MamíferosRESUMEN
Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17â nM), and their potent activation (EC50 56â pM) or inhibition (IC50 80â nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.
Asunto(s)
Riboflavina , Humanos , Riboflavina/metabolismo , Riboflavina/química , Riboflavina/farmacología , Riboflavina/biosíntesis , Riboflavina/análogos & derivados , Agentes Inmunomoduladores/química , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Menor/metabolismo , Células T Invariantes Asociadas a Mucosa/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/metabolismo , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/inmunología , Ribitol/análogos & derivados , Uracilo/análogos & derivadosRESUMEN
Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.
Asunto(s)
Lesiones Encefálicas , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Leucocitos Mononucleares , MonocitosRESUMEN
The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.
Asunto(s)
Retículo Endoplásmico/genética , Antígenos de Histocompatibilidad Clase I/genética , Metaboloma/genética , Antígenos de Histocompatibilidad Menor/genética , Proteómica , Presentación de Antígeno/genética , Antígenos/genética , Antígenos/inmunología , Sistemas CRISPR-Cas/genética , Humanos , Ligandos , Activación de Linfocitos/genética , Proteínas de Transporte de Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Riboflavina/genéticaRESUMEN
The low mutational burden of epithelial ovarian cancer (EOC) is an impediment to immunotherapies that rely on conventional MHC-restricted, neoantigen-reactive T lymphocytes. Mucosa-associated invariant T (MAIT) cells are MR1-restricted T cells with remarkable immunomodulatory properties. We sought to characterize intratumoral and ascitic MAIT cells in EOC. Single-cell RNA sequencing of six primary human tumor specimens demonstrated that MAIT cells were present at low frequencies within several tumors. When detectable, these cells highly expressed CD69 and VSIR, but otherwise exhibited a transcriptomic signature inconsistent with overt cellular activation and/or exhaustion. Unlike mainstream CD8+ T cells, CD8+ MAIT cells harbored high transcript levels of TNF, PRF1, GZMM and GNLY, suggesting their arming and cytotoxic potentials. In a congenic, MAIT cell-sufficient mouse model of EOC, MAIT and invariant natural killer T cells amassed in the peritoneal cavity where they showed robust IL-17A and IFN-γ production capacities, respectively. However, they gradually lost these functions with tumor progression. In a cohort of 23 EOC patients, MAIT cells were readily detectable in all ascitic fluids examined. In a sub-cohort in which we interrogated ascitic MAIT cells for functional impairments, several exhaustion markers, most notably VISTA, were present on the surface. However, ascitic MAIT cells were capable of producing IFN-γ, TNF-α and granzyme B, but neither IL-17A nor IL-10, in response to an MR1 ligand, bacterial lysates containing MR1 ligands, or a combination of IL-12 and IL-18. In conclusion, ascitic MAIT cells in EOC possess inducible effector functions that may be modified in future immunotherapeutic strategies.
Asunto(s)
Células T Invariantes Asociadas a Mucosa , Neoplasias Ováricas , Animales , Ascitis , Linfocitos T CD8-positivos , Carcinoma Epitelial de Ovario , Señales (Psicología) , Citocinas , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Interleucina-17 , Ligandos , Ratones , Antígenos de Histocompatibilidad MenorRESUMEN
Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.
Asunto(s)
Algoritmos , Colorantes , InmunofenotipificaciónRESUMEN
Mucosal-associated invariant T (MAIT) cells are abundant innate-like T cells important in antimicrobial immunity. These cells express a semi-invariant T cell receptor that recognizes the Major Histocompatibility Complex (MHC) class I-related protein 1 (MR1) in complex with small metabolite antigens derived from a range of commensal and pathogenic bacteria and yeasts, but not other pathogens such as viruses. Thus, MR1 stimulation of MAIT cells was thought to act as a sensor of bacterial infection and was not directly involved in anti-viral immunity. Surprisingly, viruses have recently been shown to directly impair MR1 antigen presentation by targeting the intracellular pool of MR1 for degradation. In this review, we summarize our current understanding of viral evasion of MR1 presentation pathway, and contrast this to evasion of other related MHC molecules. We examine MAIT cell activity in viral infection with a focus on the role of TCR-mediated activation of these innate-like cells and speculate on the selective pressure for viral evasion of MR1 antigen presentation. Overall, viral evasion of MR1 presentation uncovers a new avenue of research and implies that the MR1-MAIT cell axis is more important in viral immunity than was previously appreciated.
Asunto(s)
Presentación de Antígeno , Células T Invariantes Asociadas a Mucosa , Virosis , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Virosis/inmunologíaRESUMEN
Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes restricted by the antigen (Ag)-presenting molecule MHC class I (MHC I)-related protein 1 (MR1). The Ags presented by MR1 are vitamin B-related Ags (VitBAgs), 'building-block' metabolites of riboflavin that are synthesized by a range of microbes. MR1 presentation is thus a unique mechanism for the immune detection of a pathogen metabolic signature. While the full picture of how MR1 accomplishes this remains incomplete, recent data show that, unlike other MHC molecules, MR1 operates by a presentation-on-demand mechanism. In the absence of metabolite ligands MR1 is mostly stored in the endoplasmic reticulum (ER). Ligand binding leads to the formation of a Schiff-base bond between MR1 and its ligand, triggering a 'molecular switch' in MR1 that allows trafficking of the complexes to the cell surface. The complexes are subsequently internalized and mostly degraded irrespective of the affinity of the interaction between MR1 and its ligands. Here we review past and recent studies that have contributed to defining this pathway and propose new directions for a full understanding of the role and mechanisms of MR1 Ag presentation.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Antígenos de Histocompatibilidad Menor/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunomodulación , Antígenos de Histocompatibilidad Menor/inmunología , TranscriptomaRESUMEN
Schistosomiasis is a tropical disease affecting over 230 million people worldwide. Although effective drug treatment is available, reinfections are common, and development of immunity is slow. Most antibodies raised during schistosome infection are directed against glycans, some of which are thought to be protective. Developing schistosomula are considered most vulnerable to immune attack, and better understanding of local antibody responses raised against glycans expressed by this life stage might reveal possible glycan vaccine candidates for future vaccine research. We used antibody-secreting cell (ASC) probes to characterize local antiglycan antibody responses against migrating Schistosoma japonicum schistosomula in different tissues of rats. Analysis by shotgun Schistosoma glycan microarray resulted in the identification of antiglycan antibody response patterns that reflected the migratory pathway of schistosomula. Antibodies raised by skin lymph node (LN) ASC probes mainly targeted N-glycans with terminal mannose residues, Galß1-4GlcNAc (LacNAc) and Galß1-4(Fucα1-3)GlcNAc (LeX). Also, responses to antigenic and schistosome-specific glycosphingolipid (GSL) glycans containing highly fucosylated GalNAcß1-4(GlcNAcß1)n stretches that are believed to be present at the parasite's surface constitutively upon transformation were found. Antibody targets recognized by lung LN ASC probes were mainly N-glycans presenting GalNAcß1-4GlcNAc (LDN) and GlcNAc motifs. Surprisingly, antibodies against highly antigenic multifucosylated motifs of GSL glycans were not observed in lung LN ASC probes, indicating that these antigens are not expressed in lung stage schistosomula or are not appropriately exposed to induce immune responses locally. The local antiglycan responses observed in this study highlight the stage- and tissue-specific expression of antigenic parasite glycans and provide insights into glycan targets possibly involved in resistance to S. japonicum infection.
Asunto(s)
Antígenos Helmínticos/inmunología , Polisacáridos/inmunología , Schistosoma japonicum/inmunología , Esquistosomiasis Japónica/inmunología , Piel/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Células Productoras de Anticuerpos/inmunología , Femenino , Glicoesfingolípidos/inmunología , Ganglios Linfáticos/inmunología , Ratas , Ratas Wistar , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/patología , Piel/parasitologíaRESUMEN
The schistosome blood flukes are some of the largest global causes of parasitic morbidity. Further study of the specific antibody response during schistosomiasis may yield the vaccines and diagnostics needed to combat this disease. Therefore, for the purposes of antigen discovery, sera and antibody-secreting cell (ASC) probes from semi-permissive rats and sera from susceptible mice were used to screen a schistosome protein microarray. Following Schistosoma japonicum infection, rats had reduced pathology, increased antibody responses and broader antigen recognition profiles compared with mice. With successive infections, rat global serological reactivity and the number of recognized antigens increased. The local antibody response in rat skin and lung, measured with ASC probes, increased after parasite migration and contributed antigen-specific antibodies to the multivalent serological response. In addition, the temporal variation of anti-parasite serum antibodies after infection and reinfection followed patterns that appear related to the antigen driving the response. Among the 29 antigens differentially recognized by the infected hosts were numerous known vaccine candidates, drug targets and several S. japonicum homologs of human schistosomiasis resistance markers-the tegument allergen-like proteins. From this set, we prioritized eight proteins that may prove to be novel schistosome vaccine and diagnostic antigens.
Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral/inmunología , Esquistosomiasis/inmunología , Esquistosomiasis/parasitología , Animales , Anticuerpos Antihelmínticos/inmunología , Antígenos Helmínticos/inmunología , Susceptibilidad a Enfermedades/inmunología , Ratones , Parásitos/inmunología , Análisis por Matrices de Proteínas , Curva ROC , Ratas Wistar , Schistosoma japonicum/inmunología , VacunasRESUMEN
Cyathostomins are ubiquitous nematodes of horses. Once ingested, they can spend a substantial time as encysted larvae in the intestinal wall. The larvae can comprise up to 90% of the total burden, with up to several million worms reported in individuals. These stages can emerge in large numbers to cause life-threatening colitis. Direct methods for detection of encysted larval burdens in live horses do not exist. Previously, two antigen complexes were identified as promising markers for infection. A component of these, cyathostomin gut associated larval antigen-1 (Cy-GALA-1), was identified following immunoscreening of a complementary DNA library. Serum immunoglobulin G(T) (IgG(T)) responses to Cy-GALA-1 were shown to inform on larval infection. Sequence analysis of polymerase chain reaction products amplified from individual worms indicated that Cy-GALA-1 was derived from Cyathostomum pateratum. As cyathostomin infections always comprise multiple species, a diagnostic test must account for this. Here, segments of the Cy-gala gene were isolated from four common species, Cyathostomum catinatum, Cylicocyclus ashworthi, Cylicostephanus goldi and Cylicostephanus longibursatus, and the associated proteins expressed in recombinant form. The specificity and immunogenicity of each protein was confirmed. Each protein was assessed by enzyme linked immuno sorbent assay (ELISA) for its ability for informing on the presence of encysted larval infection and the level of burden.
Asunto(s)
Antígenos Helmínticos/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Proteínas del Helminto/inmunología , Enfermedades de los Caballos/diagnóstico , Infecciones Equinas por Strongyloidea/diagnóstico , Strongyloidea/inmunología , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos , Antígenos Helmínticos/genética , ADN Complementario/genética , ADN de Helmintos/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas del Helminto/genética , Enfermedades de los Caballos/parasitología , Caballos , Larva , Proteínas Recombinantes , Alineación de Secuencia , Infecciones Equinas por Strongyloidea/parasitología , Strongyloidea/aislamiento & purificaciónRESUMEN
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.